BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 1186617)

  • 1. Boron neutron capture therapy for the treatment of cerebral gliomas. I. Theoretical evaluation of the efficacy of various neutron beams.
    Zamenhof RG; Murray BW; Brownell GL; Wellum GR; Tolpin EI
    Med Phys; 1975; 2(2):47-60. PubMed ID: 1186617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.
    Wheeler FJ; Nigg DW; Capala J; Watkins PR; Vroegindeweij C; Auterinen I; Seppälä T; Bleuel D
    Med Phys; 1999 Jul; 26(7):1237-44. PubMed ID: 10435523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetry of 252Cf sources for neutron radiotherapy with and without augmentation by boron neutron capture therapy.
    Yanch JC; Zamenhof RG
    Radiat Res; 1992 Sep; 131(3):249-56. PubMed ID: 1438684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of boron neutron capture therapy (BNCT) and the design and dosimetry of a high-intensity, 24 keV, neutron beam for BNCT research.
    Perks CA; Mill AJ; Constantine G; Harrison KG; Gibson JA
    Br J Radiol; 1988 Dec; 61(732):1115-26. PubMed ID: 3064858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teatment planning figures of merit in thermal and epithermal boron neutron capture therapy of brain tumours.
    Wallace SA; Mathur JN; Allen BJ
    Phys Med Biol; 1994 May; 39(5):897-906. PubMed ID: 15552092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boron self-shielding effects on dose delivery of neutron capture therapy using epithermal beam and boronophenylalanine.
    Ye SJ
    Med Phys; 1999 Nov; 26(11):2488-93. PubMed ID: 10587238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of augmentation of 252Cf implant by 10B and 157Gd neutron capture.
    Wierzbicki JG; Maruyama Y; Porter AT
    Med Phys; 1994 Jun; 21(6):787-90. PubMed ID: 7935215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor.
    Rogus RD; Harling OK; Yanch JC
    Med Phys; 1994 Oct; 21(10):1611-25. PubMed ID: 7869994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II).
    Clement SD; Choi JR; Zamenhof RG; Yanch JC; Harling OK
    Basic Life Sci; 1990; 54():51-69. PubMed ID: 2268248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron neutron capture enhancement of 252Cf brachytherapy.
    Beach JL; Schroy CB; Ashtari M; Harris MR; Maruyama Y
    Int J Radiat Oncol Biol Phys; 1990 Jun; 18(6):1421-7. PubMed ID: 2370192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.
    Ye SJ
    Phys Med Biol; 1999 Feb; 44(2):447-61. PubMed ID: 10070794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interpretation of dose calculations and cell-survival measurements for the boron neutron capture therapy of brain tumours with 24 keV neurons.
    Mill AJ; Harrison KG
    Br J Radiol; 1988 Dec; 61(732):1147-54. PubMed ID: 3219496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of low-pressure tissue equivalent proportional counters for the dosimetry of neutron beams used in BNCT and BNCEFNT.
    Kota C; Maughan RL; Tattam D; Beynon TD
    Med Phys; 2000 Mar; 27(3):535-48. PubMed ID: 10757605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of head phantom size on 10B and 1H[n,gamma]2H dose distributions for a broad field accelerator epithermal neutron source for BNCT.
    Gupta N; Niemkiewicz J; Blue TE; Gahbauer R; Qu TX
    Med Phys; 1993; 20(2 Pt 1):395-404. PubMed ID: 8497231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A prototype epithermal neutron beam for boron neutron capture therapy.
    Noonan DJ; Russell JL; Brugger RM
    Med Phys; 1986; 13(2):211-6. PubMed ID: 3010065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of dose components in head phantom for boron neutron capture therapy.
    da Silva AX; Crispim VR
    Cell Mol Biol (Noisy-le-grand); 2002 Nov; 48(7):813-7. PubMed ID: 12622057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron neutron capture therapy of brain tumors: an emerging therapeutic modality.
    Barth RF; Soloway AH; Goodman JH; Gahbauer RA; Gupta N; Blue TE; Yang W; Tjarks W
    Neurosurgery; 1999 Mar; 44(3):433-50; discussion 450-1. PubMed ID: 10069580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-line reconstruction of low boron concentrations by in vivo gamma-ray spectroscopy for BNCT.
    Verbakel WF; Stecher-Rasmussen F
    Phys Med Biol; 2001 Mar; 46(3):687-701. PubMed ID: 11277217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.