These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11866186)

  • 41. Cone visual pigments of monotremes: filling the phylogenetic gap.
    Wakefield MJ; Anderson M; Chang E; Wei KJ; Kaul R; Graves JA; Grützner F; Deeb SS
    Vis Neurosci; 2008; 25(3):257-64. PubMed ID: 18598396
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Physiology of the visual retinal signal: From phototransduction to the visual cycle].
    Salesse C
    J Fr Ophtalmol; 2017 Mar; 40(3):239-250. PubMed ID: 28318721
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visual pigments in a palaeognath bird, the emu Dromaius novaehollandiae: implications for spectral sensitivity and the origin of ultraviolet vision.
    Hart NS; Mountford JK; Davies WI; Collin SP; Hunt DM
    Proc Biol Sci; 2016 Jul; 283(1834):. PubMed ID: 27383819
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula).
    Vlahos LM; Knott B; Valter K; Hemmi JM
    J Comp Neurol; 2014 Oct; 522(15):3423-36. PubMed ID: 24737644
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visual pigment and oil droplet characteristics of the bobolink (Dolichonyx oryzivorus), a new world migratory bird.
    Beason RC; Loew ER
    Vision Res; 2008 Jan; 48(1):1-8. PubMed ID: 18054982
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microspectrophotometric evidence for cone monochromacy in sharks.
    Hart NS; Theiss SM; Harahush BK; Collin SP
    Naturwissenschaften; 2011 Mar; 98(3):193-201. PubMed ID: 21212930
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoreceptors and eyes of pikeperch Sander lucioperca, pike Esox lucius, perch Perca fluviatilis and roach Rutilus rutilus from a clear and a brown lake.
    Jokela-Määttä M; Viljanen M; Nevala N; Donner K; Brönmark C
    J Fish Biol; 2019 Jul; 95(1):200-213. PubMed ID: 30047140
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch.
    Hart NS; Lisney TJ; Marshall NJ; Collin SP
    J Exp Biol; 2004 Dec; 207(Pt 26):4587-94. PubMed ID: 15579554
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biochemistry of visual pigment regeneration: the Friedenwald lecture.
    Saari JC
    Invest Ophthalmol Vis Sci; 2000 Feb; 41(2):337-48. PubMed ID: 10670460
    [No Abstract]   [Full Text] [Related]  

  • 50. A short-wavelength sensitive cone mechanism in juvenile yellow perch, Perca flavescens.
    Loew ER; Wahl CM
    Vision Res; 1991; 31(3):353-60. PubMed ID: 1843747
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anion sensitivity and spectral tuning of cone visual pigments in situ.
    Kleinschmidt J; Harosi FI
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9181-5. PubMed ID: 1409622
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microspectrophotometric determinations of rod visual pigments in some adult and larval Australian amphibians.
    Partridge JC; Speare P; Shand J; Muntz WR; Williams DM
    Vis Neurosci; 1992 Aug; 9(2):137-42. PubMed ID: 1504022
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The cone photoreceptors and visual pigments of chameleons.
    Bowmaker JK; Loew ER; Ott M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Oct; 191(10):925-32. PubMed ID: 16025336
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A physiological analysis of color vision in batoid elasmobranchs.
    Bedore CN; Loew ER; Frank TM; Hueter RE; McComb DM; Kajiura SM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Dec; 199(12):1129-41. PubMed ID: 24078200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visual pigments of Baltic Sea fishes of marine and limnic origin.
    Jokela-Määttä M; Smura T; Aaltonen A; Ala-Laurila P; Donner K
    Vis Neurosci; 2007; 24(3):389-98. PubMed ID: 17822578
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Eye spectral sensitivity in fresh- and brackish-water populations of three glacial-relict Mysis species (Crustacea): physiology and genetics of differential tuning.
    Donner K; Zak P; Viljanen M; Lindström M; Feldman T; Ostrovsky M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Apr; 202(4):297-312. PubMed ID: 26984686
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The retina of five atherinomorph teleosts: photoreceptors, patterns and spectral sensitivities.
    Reckel F; Melzer RR; Parry JW; Bowmaker JK
    Brain Behav Evol; 2002; 60(5):249-64. PubMed ID: 12476052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visual pigments and dichroism of anchovy cones: a model system for polarization detection.
    Flamarique IN; Hárosi FI
    Vis Neurosci; 2002; 19(4):467-73. PubMed ID: 12511079
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The visual pigments of the West Indian manatee (Trichechus manatus).
    Newman LA; Robinson PR
    Vision Res; 2006 Oct; 46(20):3326-30. PubMed ID: 16650454
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of spectral tuning in the dolphin visual pigments.
    Fasick JI; Robsinson PR
    Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.