These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11866550)

  • 21. A comparison of the composition of silk proteins produced by spiders and insects.
    Craig CL; Hsu M; Kaplan D; Pierce NE
    Int J Biol Macromol; 1999; 24(2-3):109-18. PubMed ID: 10342754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders.
    Rousseau ME; Lefèvre T; Pézolet M
    Biomacromolecules; 2009 Oct; 10(10):2945-53. PubMed ID: 19785404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Duplication and concerted evolution of MiSp-encoding genes underlie the material properties of minor ampullate silks of cobweb weaving spiders.
    Vienneau-Hathaway JM; Brassfield ER; Lane AK; Collin MA; Correa-Garhwal SM; Clarke TH; Schwager EE; Garb JE; Hayashi CY; Ayoub NA
    BMC Evol Biol; 2017 Mar; 17(1):78. PubMed ID: 28288560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silk elasticity as a potential constraint on spider body size.
    Rodríguez-Gironés MA; Corcobado G; Moya-Laraño J
    J Theor Biol; 2010 Oct; 266(3):430-5. PubMed ID: 20600136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders.
    Lefèvre T; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2008 Sep; 9(9):2399-407. PubMed ID: 18702545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prey type, vibrations and handling interactively influence spider silk expression.
    Blamires SJ; Chao IC; Tso IM
    J Exp Biol; 2010 Nov; 213(Pt 22):3906-10. PubMed ID: 21037070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins.
    Bogush VG; Sokolova OS; Davydova LI; Klinov DV; Sidoruk KV; Esipova NG; Neretina TV; Orchanskyi IA; Makeev VY; Tumanyan VG; Shaitan KV; Debabov VG; Kirpichnikov MP
    J Neuroimmune Pharmacol; 2009 Mar; 4(1):17-27. PubMed ID: 18839314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 13C NMR of Nephila clavipes major ampullate silk gland.
    Hijirida DH; Do KG; Michal C; Wong S; Zax D; Jelinski LW
    Biophys J; 1996 Dec; 71(6):3442-7. PubMed ID: 8968613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure.
    Benamú M; Lacava M; García LF; Santana M; Fang J; Wang X; Blamires SJ
    Chemosphere; 2017 Aug; 181():241-249. PubMed ID: 28445817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ conformation of spider silk proteins in the intact major ampullate gland and in solution.
    Lefèvre T; Leclerc J; Rioux-Dubé JF; Buffeteau T; Paquin MC; Rousseau ME; Cloutier I; Auger M; Gagné SM; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2007 Aug; 8(8):2342-4. PubMed ID: 17658884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstructural homogeneity of support silk spun by Eriophora fuliginea (C.L. Koch) determined by scanning X-ray microdiffraction.
    Riekel C; Craig CL; Burghammer M; Müller M
    Naturwissenschaften; 2001 Feb; 88(2):67-72. PubMed ID: 11320890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects.
    Dicko C; Knight D; Kenney JM; Vollrath F
    Biomacromolecules; 2004; 5(6):2105-15. PubMed ID: 15530023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks.
    Blamires SJ; Kasumovic MM; Tso IM; Martens PJ; Hook JM; Rawal A
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27517909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy.
    Shao Z; Young RJ; Vollrath F
    Int J Biol Macromol; 1999; 24(2-3):295-300. PubMed ID: 10342778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationships between supercontraction and mechanical properties of spider silk.
    Liu Y; Shao Z; Vollrath F
    Nat Mater; 2005 Dec; 4(12):901-5. PubMed ID: 16299506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of the torsion angles of alanine and glycine residues of model compounds of spider silk (AGG)(10) using solid-state NMR methods.
    Ashida J; Ohgo K; Komatsu K; Kubota A; Asakura T
    J Biomol NMR; 2003 Feb; 25(2):91-103. PubMed ID: 12652118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure, composition and mechanical properties of the silk fibres of the egg case of the Joro spider, Nephila clavata (Araneae, Nephilidae).
    Jiang P; Guo C; Lv T; Xiao Y; Liao X; Zhou B
    J Biosci; 2011 Dec; 36(5):897-910. PubMed ID: 22116288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of major ampullate silk cDNAs from two non-orb-weaving spiders.
    Tian M; Liu C; Lewis R
    Biomacromolecules; 2004; 5(3):657-60. PubMed ID: 15132643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silk gene expression of theridiid spiders: implications for male-specific silk use.
    Correa-Garhwal SM; Chaw RC; Clarke TH; Ayoub NA; Hayashi CY
    Zoology (Jena); 2017 Jun; 122():107-114. PubMed ID: 28536006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of a protein superfiber: spider dragline silk.
    Xu M; Lewis RV
    Proc Natl Acad Sci U S A; 1990 Sep; 87(18):7120-4. PubMed ID: 2402494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.