These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11867436)

  • 1. Continuum and atomistic modeling of ion partitioning into a peptide nanotube.
    Asthagiri D; Bashford D
    Biophys J; 2002 Mar; 82(3):1176-89. PubMed ID: 11867436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steered molecular dynamics studies of the potential of mean force of a Na+ or K+ ion in a cyclic peptide nanotube.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem B; 2006 Dec; 110(51):26448-60. PubMed ID: 17181305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling peptide nanotubes for artificial ion channels.
    Rahmat F; Thamwattana N; Cox BJ
    Nanotechnology; 2011 Nov; 22(44):445707. PubMed ID: 21979746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion permeation dynamics in carbon nanotubes.
    Liu H; Murad S; Jameson CJ
    J Chem Phys; 2006 Aug; 125(8):084713. PubMed ID: 16965045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional study of ion hydration for the alkali metal ions (Li+, Na+, K+) and the halide ions (F-, Br-, Cl-).
    Krekeler C; Hess B; Delle Site L
    J Chem Phys; 2006 Aug; 125(5):054305. PubMed ID: 16942211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A.
    Aqvist J; Warshel A
    Biophys J; 1989 Jul; 56(1):171-82. PubMed ID: 2473789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brownian dynamics study of ion transport in the vestibule of membrane channels.
    Li SC; Hoyles M; Kuyucak S; Chung SH
    Biophys J; 1998 Jan; 74(1):37-47. PubMed ID: 9449307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion passage pathways and thermodynamics of the amphotericin B membrane channel.
    Resat H; Baginski M
    Eur Biophys J; 2002 Jul; 31(4):294-305. PubMed ID: 12122476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of a channel-forming peptide on energy barriers to ion permeation, viewed from a continuum dielectric perspective.
    Partenskii MB; Dorman V; Jordan PC
    Biophys J; 1994 Oct; 67(4):1429-38. PubMed ID: 7529581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144104. PubMed ID: 21495739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study.
    Smith GR; Sansom MS
    Biophys J; 1998 Dec; 75(6):2767-82. PubMed ID: 9826599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration of alkali ions from first principles molecular dynamics revisited.
    Ikeda T; Boero M; Terakura K
    J Chem Phys; 2007 Jan; 126(3):034501. PubMed ID: 17249878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvation thermodynamics and heat capacity of polar and charged solutes in water.
    Sedlmeier F; Netz RR
    J Chem Phys; 2013 Mar; 138(11):115101. PubMed ID: 23534665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of ion and water barrier crossings in a simulated ion channel.
    Chiu SW; Novotny JA; Jakobsson E
    Biophys J; 1993 Jan; 64(1):98-109. PubMed ID: 7679301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions.
    Collins KD
    Biophys Chem; 2012 Jun; 167():43-59. PubMed ID: 22608112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.