These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11867444)

  • 41. Purification and reconstitution of the ryanodine- and caffeine-sensitive Ca2+ release channel complex from muscle sarcoplasmic reticulum.
    Meissner G; Lai FA; Anderson K; Xu L; Liu QY; Herrmann-Frank A; Rousseau E; Jones RV; Lee HB
    Adv Exp Med Biol; 1991; 304():241-56. PubMed ID: 1666486
    [No Abstract]   [Full Text] [Related]  

  • 42. Ryanodine sensitizes the cardiac Ca(2+) release channel (ryanodine receptor isoform 2) to Ca(2+) activation and dissociates as the channel is closed by Ca(2+) depletion.
    Du GG; Guo X; Khanna VK; MacLennan DH
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13625-30. PubMed ID: 11698671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activation and inhibition of the calcium-release channel of isolated skeletal muscle heavy sarcoplasmic reticulum. Models of the calcium-release channel.
    Wyskovsky W; Hohenegger M; Plank B; Hellmann G; Klein S; Suko J
    Eur J Biochem; 1990 Dec; 194(2):549-59. PubMed ID: 1702712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogen peroxide inhibits chloride channels of the sarcoplasmic reticulum of skeletal muscle.
    Kourie JI
    J Membr Biol; 1999 Nov; 172(1):25-36. PubMed ID: 10552011
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of the calcium release channel from skeletal muscle by suramin and the disulfonated stilbene derivatives DIDS, DBDS, and DNDS.
    O'Neill ER; Sakowska MM; Laver DR
    Biophys J; 2003 Mar; 84(3):1674-89. PubMed ID: 12609870
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Skeletal muscle ryanodine receptor is a redox sensor with a well defined redox potential that is sensitive to channel modulators.
    Xia R; Stangler T; Abramson JJ
    J Biol Chem; 2000 Nov; 275(47):36556-61. PubMed ID: 10952995
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intramuscular calcium movements: experiments from the Soviet biosatellite Biocosmos.
    Goblet C; Holy X; Mounier Y
    Adv Space Res; 1984; 4(10):47-53. PubMed ID: 11539643
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A two-gate model for the ryanodine receptor with allosteric modulation by caffeine and quercetin.
    Baran I; Ganea C; Baran V
    Eur Biophys J; 2008 Jul; 37(6):793-806. PubMed ID: 18253727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bovine serum albumin potentiates caffeine- or ATP-induced tension in human skinned skeletal muscle fibers.
    Ponte CG; Oliveira CF; Suarez-Kurtz G
    Braz J Med Biol Res; 1997 May; 30(5):675-8. PubMed ID: 9283638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sarcoplasmic reticulum release channels from frog skeletal muscle display two types of calcium dependence.
    Bull R; Marengo JJ
    FEBS Lett; 1993 Oct; 331(3):223-7. PubMed ID: 8397110
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of 30 kDa protein for Ca(2+) releasing action of myotoxin a with a mechanism common to DIDS in skeletal muscle sarcoplasmic reticulum.
    Hirata Y; Nakahata N; Ohkura M; Ohizumi Y
    Biochim Biophys Acta; 1999 Aug; 1451(1):132-40. PubMed ID: 10446395
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sulfhydryls associated with H2O2-induced channel activation are on luminal side of ryanodine receptors.
    Oba T; Ishikawa T; Yamaguchi M
    Am J Physiol; 1998 Apr; 274(4):C914-21. PubMed ID: 9575787
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The spark and its ember: separately gated local components of Ca(2+) release in skeletal muscle.
    González A; Kirsch WG; Shirokova N; Pizarro G; Stern MD; Ríos E
    J Gen Physiol; 2000 Feb; 115(2):139-58. PubMed ID: 10653893
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of verapamil and gadolinium on caffeine-induced contractures and calcium fluxes in frog slow skeletal muscle fibers.
    Shabala L; Sánchez-Pastor E; Trujillo X; Shabala S; Muñiz J; Huerta M
    J Membr Biol; 2008 Jan; 221(1):7-13. PubMed ID: 18038110
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Caffeine- and ryanodine-induced changes in the spectrum of spontaneously secreted quanta of the mediator in the neuromuscular synapse of mice.
    Balezina OP; Surova NV; Lapteva VI
    Dokl Biol Sci; 2001; 380():435-7. PubMed ID: 12918397
    [No Abstract]   [Full Text] [Related]  

  • 56. Calcium-binding properties of sarcoplasmic reticulum as influenced by ATP, caffeine, quinine, and local anesthetics.
    Carvalho AP
    J Gen Physiol; 1968 Sep; 52(3):622-42. PubMed ID: 19873636
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acute effects of caffeine or quercetin ingestion on motor unit firing pattern before and after resistance exercise.
    Nishikawa T; Hirono T; Holobar A; Kunugi S; Okudaira M; Ohya T; Watanabe K
    Eur J Appl Physiol; 2024 Jun; 124(6):1645-1658. PubMed ID: 38193908
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The dose-response relationship of quercetin on the motor unit firing patterns and contractile properties of muscle in men and women.
    Watanabe K; Kunugi S; Holobar A
    J Int Soc Sports Nutr; 2023 Dec; 20(1):2265140. PubMed ID: 37786989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of Potential Human Ryanodine Receptor 1 Agonists and Molecular Mechanisms of Natural Small-Molecule Phenols as Anxiolytics.
    Chen Y; Wang X; Zhai H; Zhang Y; Huang J
    ACS Omega; 2021 Nov; 6(44):29940-29954. PubMed ID: 34778666
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quercetin ingestion modifies human motor unit firing patterns and muscle contractile properties.
    Watanabe K; Holobar A
    Exp Brain Res; 2021 May; 239(5):1567-1579. PubMed ID: 33742251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.