These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11867444)

  • 61. Increase in longevity and amelioration of pesticide toxicity by natural levels of dietary phytochemicals in the honey bee, Apis mellifera.
    Liao LH; Pearlstein DJ; Wu WY; Kelley AG; Montag WM; Hsieh EM; Berenbaum MR
    PLoS One; 2020; 15(12):e0243364. PubMed ID: 33296402
    [TBL] [Abstract][Full Text] [Related]  

  • 62. RyR1-targeted drug discovery pipeline integrating FRET-based high-throughput screening and human myofiber dynamic Ca
    Rebbeck RT; Singh DP; Janicek KA; Bers DM; Thomas DD; Launikonis BS; Cornea RL
    Sci Rep; 2020 Feb; 10(1):1791. PubMed ID: 32019969
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Quercetin Enhances Inhibitory Synaptic Inputs and Reduces Excitatory Synaptic Inputs to OFF- and ON-Type Retinal Ganglion Cells in a Chronic Glaucoma Rat Model.
    Zhou X; Li G; Yang B; Wu J
    Front Neurosci; 2019; 13():672. PubMed ID: 31293381
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Effects of Quercetin Supplementation on Eccentric Exercise-Induced Muscle Damage.
    Bazzucchi I; Patrizio F; Ceci R; Duranti G; Sgrò P; Sabatini S; Di Luigi L; Sacchetti M; Felici F
    Nutrients; 2019 Jan; 11(1):. PubMed ID: 30669587
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The acute effect of Quercetin on muscle performance following a single resistance training session.
    Patrizio F; Ditroilo M; Felici F; Duranti G; De Vito G; Sabatini S; Sacchetti M; Bazzucchi I
    Eur J Appl Physiol; 2018 May; 118(5):1021-1031. PubMed ID: 29511920
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development.
    Raie DS; Mhatre E; El-Desouki DS; Labena A; El-Ghannam G; Farahat LA; Youssef T; Fritzsche W; Kovács ÁT
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29346268
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Quercetin as a fluorescent probe for the ryanodine receptor activity in Jurkat cells.
    Baran I; Katona E; Ganea C
    Pflugers Arch; 2013 Aug; 465(8):1101-19. PubMed ID: 23475436
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Both basic and acidic amino acid residues of IpTx(a) are involved in triggering substate of RyR1.
    Seo IR; Kang DE; Song DW; Kim DH
    J Biomed Biotechnol; 2011; 2011():386384. PubMed ID: 22007141
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phenol increases intracellular [Ca2+] during twitch contractions in intact Xenopus skeletal myofibers.
    Nogueira L; Hogan MC
    J Appl Physiol (1985); 2010 Nov; 109(5):1384-93. PubMed ID: 20724558
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Temporal switching and cell-to-cell variability in Ca2+ release activity in mammalian cells.
    Nakamura N; Yamazawa T; Okubo Y; Iino M
    Mol Syst Biol; 2009; 5():247. PubMed ID: 19293827
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A two-gate model for the ryanodine receptor with allosteric modulation by caffeine and quercetin.
    Baran I; Ganea C; Baran V
    Eur Biophys J; 2008 Jul; 37(6):793-806. PubMed ID: 18253727
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Aldolase potentiates DIDS activation of the ryanodine receptor in rabbit skeletal sarcoplasmic reticulum.
    Seo IR; Moh SH; Lee EH; Meissner G; Kim DH
    Biochem J; 2006 Oct; 399(2):325-33. PubMed ID: 16817780
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Calcium activation of ryanodine receptor channels--reconciling RyR gating models with tetrameric channel structure.
    Zahradník I; Györke S; Zahradníková A
    J Gen Physiol; 2005 Nov; 126(5):515-27. PubMed ID: 16260840
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bisprasin, a novel Ca(2+) releaser with caffeine-like properties from a marine sponge, Dysidea spp., acts on Ca(2+)-induced Ca(2+) release channels of skeletal muscle sarcoplasmic reticulum.
    Suzuki A; Matsunaga K; Shin H; Tabudrav J; Shizuri Y; Ohizumi Y
    J Pharmacol Exp Ther; 2000 Feb; 292(2):725-30. PubMed ID: 10640311
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modulation of the ryanodine receptor sarcoplasmic reticular Ca2+ channel in skinned fibers of fast- and slow-twitch skeletal muscles from rabbits.
    Su JY; Chang YI
    Pflugers Arch; 1995 Jul; 430(3):358-64. PubMed ID: 7491259
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel.
    Tripathy A; Meissner G
    Biophys J; 1996 Jun; 70(6):2600-15. PubMed ID: 8744299
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel.
    Chu A; Díaz-Muñoz M; Hawkes MJ; Brush K; Hamilton SL
    Mol Pharmacol; 1990 May; 37(5):735-41. PubMed ID: 1692609
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Purification and reconstitution of the ryanodine- and caffeine-sensitive Ca2+ release channel complex from muscle sarcoplasmic reticulum.
    Meissner G; Lai FA; Anderson K; Xu L; Liu QY; Herrmann-Frank A; Rousseau E; Jones RV; Lee HB
    Adv Exp Med Biol; 1991; 304():241-56. PubMed ID: 1666486
    [No Abstract]   [Full Text] [Related]  

  • 79. Effects of quercetin on single Ca(2+) release channel behavior of skeletal muscle.
    Lee EH; Meissner G; Kim DH
    Biophys J; 2002 Mar; 82(3):1266-77. PubMed ID: 11867444
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.