These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 11867474)

  • 61. Design of self-interaction chromatography as an analytical tool for predicting protein phase behavior.
    Ahamed T; Ottens M; van Dedem GW; van der Wielen LA
    J Chromatogr A; 2005 Sep; 1089(1-2):111-24. PubMed ID: 16130779
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bayesian analysis of static light scattering data for globular proteins.
    Yin F; Khago D; Martin RW; Butts CT
    PLoS One; 2021; 16(10):e0258429. PubMed ID: 34648536
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Protein crystal nucleation: is the pair interaction potential the primary determinant of kinetics?
    Bhamidi V; Varanasi S; Schall CA
    Langmuir; 2005 Sep; 21(20):9044-50. PubMed ID: 16171331
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Measurements of protein self-association as a guide to crystallization.
    Tessier PM; Lenhoff AM
    Curr Opin Biotechnol; 2003 Oct; 14(5):512-6. PubMed ID: 14580581
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A high-throughput method for detection of protein self-association and second virial coefficient using size-exclusion chromatography through simultaneous measurement of concentration and scattered light intensity.
    Bajaj H; Sharma VK; Kalonia DS
    Pharm Res; 2007 Nov; 24(11):2071-83. PubMed ID: 17577643
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The role of electrostatics in protein-protein interactions of a monoclonal antibody.
    Roberts D; Keeling R; Tracka M; van der Walle CF; Uddin S; Warwicker J; Curtis R
    Mol Pharm; 2014 Jul; 11(7):2475-89. PubMed ID: 24892385
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Protein crystallization by design: chymotrypsinogen without precipitants.
    Pjura PE; Lenhoff AM; Leonard SA; Gittis AG
    J Mol Biol; 2000 Jul; 300(2):235-9. PubMed ID: 10873462
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Self-interaction chromatography as a tool for optimizing conditions for membrane protein crystallization.
    Gabrielsen M; Nagy LA; DeLucas LJ; Cogdell RJ
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):44-50. PubMed ID: 20057048
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Protein phase behavior and crystallization: effect of glycerol.
    Sedgwick H; Cameron JE; Poon WC; Egelhaaf SU
    J Chem Phys; 2007 Sep; 127(12):125102. PubMed ID: 17902938
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Correlation of second virial coefficient with solubility for proteins in salt solutions.
    Mehta CM; White ET; Litster JD
    Biotechnol Prog; 2012; 28(1):163-70. PubMed ID: 22002946
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Association and electrostatic steering of alpha-lactalbumin-lysozyme heterodimers.
    Persson BA; Lund M
    Phys Chem Chem Phys; 2009 Oct; 11(39):8879-85. PubMed ID: 20449034
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Correlation between the osmotic second virial coefficient and solubility for equine serum albumin and ovalbumin.
    Demoruelle K; Guo B; Kao S; McDonald HM; Nikic DB; Holman SC; Wilson WW
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 1):1544-8. PubMed ID: 12351858
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Measurements of protein-protein interactions by size exclusion chromatography.
    Bloustine J; Berejnov V; Fraden S
    Biophys J; 2003 Oct; 85(4):2619-23. PubMed ID: 14507724
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Application of the osmotic virial equation in cryobiology.
    Prickett RC; Elliott JA; McGann LE
    Cryobiology; 2010 Feb; 60(1):30-42. PubMed ID: 19665010
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hydrophobic interaction chromatography of proteins. II. Solution thermodynamic properties as a determinant of retention.
    To BC; Lenhoff AM
    J Chromatogr A; 2007 Feb; 1141(2):235-43. PubMed ID: 17207494
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Use of dynamic light scattering to determine second virial coefficient in a semidilute concentration regime.
    Yadav S; Scherer TM; Shire SJ; Kalonia DS
    Anal Biochem; 2011 Apr; 411(2):292-6. PubMed ID: 21156151
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Predicting Protein Interactions of Concentrated Globular Protein Solutions Using Colloidal Models.
    Woldeyes MA; Calero-Rubio C; Furst EM; Roberts CJ
    J Phys Chem B; 2017 May; 121(18):4756-4767. PubMed ID: 28422503
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Experimental support for reclassification of the light scattering second virial coefficient from macromolecular solutions as a hydrodynamic parameter.
    Winzor DJ; Dinu V; Scott DJ; Harding SE
    Eur Biophys J; 2023 Jul; 52(4-5):343-352. PubMed ID: 37460663
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A.
    Guélat B; Ströhlein G; Lattuada M; Morbidelli M
    J Chromatogr A; 2010 Aug; 1217(35):5610-21. PubMed ID: 20663509
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Calculations of the second virial coefficients of protein solutions with an extended fast multipole method.
    Kim B; Song X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011915. PubMed ID: 21405721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.