BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 11867722)

  • 1. Network of coupled promoting motions in enzyme catalysis.
    Agarwal PK; Billeter SR; Rajagopalan PT; Benkovic SJ; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2794-9. PubMed ID: 11867722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of mutation on enzyme motion in dihydrofolate reductase.
    Watney JB; Agarwal PK; Hammes-Schiffer S
    J Am Chem Soc; 2003 Apr; 125(13):3745-50. PubMed ID: 12656604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: mutational effects on hydride transfer rates.
    Rajagopalan PT; Lutz S; Benkovic SJ
    Biochemistry; 2002 Oct; 41(42):12618-28. PubMed ID: 12379104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase.
    Wong KF; Selzer T; Benkovic SJ; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6807-12. PubMed ID: 15811945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distal Regions Regulate Dihydrofolate Reductase-Ligand Interactions.
    Goldstein M; Goodey NM
    Methods Mol Biol; 2021; 2253():185-219. PubMed ID: 33315225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relating protein motion to catalysis.
    Hammes-Schiffer S; Benkovic SJ
    Annu Rev Biochem; 2006; 75():519-41. PubMed ID: 16756501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.
    Swanwick RS; Maglia G; Tey LH; Allemann RK
    Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions.
    Pang J; Pu J; Gao J; Truhlar DG; Allemann RK
    J Am Chem Soc; 2006 Jun; 128(24):8015-23. PubMed ID: 16771517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing a single distal motion in dihydrofolate reductase.
    Sergi A; Watney JB; Wong KF; Hammes-Schiffer S
    J Phys Chem B; 2006 Feb; 110(5):2435-41. PubMed ID: 16471835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, dynamics, and catalytic function of dihydrofolate reductase.
    Schnell JR; Dyson HJ; Wright PE
    Annu Rev Biophys Biomol Struct; 2004; 33():119-40. PubMed ID: 15139807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydride transfer catalysed by Escherichia coli and Bacillus subtilis dihydrofolate reductase: coupled motions and distal mutations.
    Hammes-Schiffer S; Watney JB
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1365-73. PubMed ID: 16873124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein motions and dynamic effects in enzyme catalysis.
    Luk LY; Loveridge EJ; Allemann RK
    Phys Chem Chem Phys; 2015 Dec; 17(46):30817-27. PubMed ID: 25854702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extension and limits of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase.
    Singh P; Sen A; Francis K; Kohen A
    J Am Chem Soc; 2014 Feb; 136(6):2575-82. PubMed ID: 24450297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple intermediates, diverse conformations, and cooperative conformational changes underlie the catalytic hydride transfer reaction of dihydrofolate reductase.
    Arora K; Brooks CL
    Top Curr Chem; 2013; 337():165-87. PubMed ID: 23420416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis.
    Bhabha G; Lee J; Ekiert DC; Gam J; Wilson IA; Dyson HJ; Benkovic SJ; Wright PE
    Science; 2011 Apr; 332(6026):234-8. PubMed ID: 21474759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A perspective on enzyme catalysis.
    Benkovic SJ; Hammes-Schiffer S
    Science; 2003 Aug; 301(5637):1196-202. PubMed ID: 12947189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent effects on environmentally coupled hydrogen tunnelling during catalysis by dihydrofolate reductase from Thermotoga maritima.
    Loveridge EJ; Evans RM; Allemann RK
    Chemistry; 2008; 14(34):10782-8. PubMed ID: 18924193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies.
    Wang Z; Antoniou D; Schwartz SD; Schramm VL
    Biochemistry; 2016 Jan; 55(1):157-66. PubMed ID: 26652185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.