BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 11867722)

  • 21. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase.
    Wang L; Goodey NM; Benkovic SJ; Kohen A
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15753-8. PubMed ID: 17032759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.
    Loveridge EJ; Tey LH; Allemann RK
    J Am Chem Soc; 2010 Jan; 132(3):1137-43. PubMed ID: 20047317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering.
    Tehei M; Smith JC; Monk C; Ollivier J; Oettl M; Kurkal V; Finney JL; Daniel RM
    Biophys J; 2006 Feb; 90(3):1090-7. PubMed ID: 16258053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
    Watney JB; Hammes-Schiffer S
    J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.
    Maglia G; Javed MH; Allemann RK
    Biochem J; 2003 Sep; 374(Pt 2):529-35. PubMed ID: 12765545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence that a 'dynamic knockout' in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis.
    Loveridge EJ; Behiry EM; Guo J; Allemann RK
    Nat Chem; 2012 Mar; 4(4):292-7. PubMed ID: 22437714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance.
    Swanwick RS; Shrimpton PJ; Allemann RK
    Biochemistry; 2004 Apr; 43(14):4119-27. PubMed ID: 15065854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformation coupled enzyme catalysis: single-molecule and transient kinetics investigation of dihydrofolate reductase.
    Antikainen NM; Smiley RD; Benkovic SJ; Hammes GG
    Biochemistry; 2005 Dec; 44(51):16835-43. PubMed ID: 16363797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis.
    Maglia G; Allemann RK
    J Am Chem Soc; 2003 Nov; 125(44):13372-3. PubMed ID: 14583029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing coupled motions in enzymatic hydrogen tunnelling reactions.
    Allemann RK; Evans RM; Loveridge EJ
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):349-53. PubMed ID: 19290860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase.
    Thorpe IF; Brooks CL
    Proteins; 2004 Nov; 57(3):444-57. PubMed ID: 15382243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling the role of protein dynamics in dihydrofolate reductase catalysis.
    Luk LY; Javier Ruiz-Pernía J; Dawson WM; Roca M; Loveridge EJ; Glowacki DR; Harvey JN; Mulholland AJ; Tuñón I; Moliner V; Allemann RK
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16344-9. PubMed ID: 24065822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase.
    Hicks SN; Smiley RD; Hamilton JB; Howell EE
    Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of enzyme motion on activity.
    Hammes-Schiffer S
    Biochemistry; 2002 Nov; 41(45):13335-43. PubMed ID: 12416977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues.
    Kim HS; Damo SM; Lee SY; Wemmer D; Klinman JP
    Biochemistry; 2005 Aug; 44(34):11428-39. PubMed ID: 16114879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different reaction mechanisms for mesophilic and thermophilic dihydrofolate reductases.
    Loveridge EJ; Behiry EM; Swanwick RS; Allemann RK
    J Am Chem Soc; 2009 May; 131(20):6926-7. PubMed ID: 19419144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of dimerization on the stability and catalytic activity of dihydrofolate reductase from the hyperthermophile Thermotoga maritima.
    Loveridge EJ; Rodriguez RJ; Swanwick RS; Allemann RK
    Biochemistry; 2009 Jun; 48(25):5922-33. PubMed ID: 19453185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.