These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11868233)

  • 21. Prefrontal control of trace eyeblink conditioning in rabbits (Oryctolagus cuniculus) II: effects of type of unconditioned stimulus (airpuff vs. periorbital shock) and unconditioned stimulus intensity.
    Oswald BB; Knuckley B; Mahan K; Sanders C; Powell DA
    Physiol Behav; 2009 Jan; 96(1):67-72. PubMed ID: 18793661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neonatal maternal separation alters adult eyeblink conditioning and glucocorticoid receptor expression in the interpositus nucleus of the cerebellum.
    Wilber AA; Southwood CJ; Sokoloff G; Steinmetz JE; Wellman CL
    Dev Neurobiol; 2007 Nov; 67(13):1751-64. PubMed ID: 17659594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. When all is still concealed: are we closer to understanding the mechanisms underlying evaluative conditioning?
    Field AP
    Conscious Cogn; 2001 Dec; 10(4):559-66; discussion 567-73. PubMed ID: 11790043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decremental effects of context exposure following delay eyeblink conditioning in rabbits.
    Poulos AM; Pakaprot N; Mahdi B; Kehoe EJ; Thompson RF
    Behav Neurosci; 2006 Jun; 120(3):730-4. PubMed ID: 16768625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fear potentiated startle at short intervals following conditioned stimulus onset during delay but not trace conditioning.
    Asli O; Kulvedrøsten S; Solbakken LE; Flaten MA
    Psychophysiology; 2009 Jul; 46(4):880-8. PubMed ID: 19386051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Connections of the caudal anterior cingulate cortex in rabbit: neural circuitry participating in the acquisition of trace eyeblink conditioning.
    Weible AP; Weiss C; Disterhoft JF
    Neuroscience; 2007 Mar; 145(1):288-302. PubMed ID: 17224240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purkinje cell activity during classical eyeblink conditioning in decerebrate guinea pigs.
    Kotani S; Kawahara S; Kirino Y
    Brain Res; 2006 Jan; 1068(1):70-81. PubMed ID: 16364260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contingency awareness in human aversive conditioning involves the middle frontal gyrus.
    Carter RM; O'Doherty JP; Seymour B; Koch C; Dolan RJ
    Neuroimage; 2006 Feb; 29(3):1007-12. PubMed ID: 16246595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CS-US preexposure effects on trace eyeblink conditioning in young rats: potential implications for functional brain development.
    Claflin DI; Buffington ML
    Behav Neurosci; 2006 Apr; 120(2):257-66. PubMed ID: 16719690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural, electrodermal and behavioral response patterns in contingency aware and unaware subjects during a picture-picture conditioning paradigm.
    Klucken T; Kagerer S; Schweckendiek J; Tabbert K; Vaitl D; Stark R
    Neuroscience; 2009 Jan; 158(2):721-31. PubMed ID: 18976695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain mechanisms of extinction of the classically conditioned eyeblink response.
    Robleto K; Poulos AM; Thompson RF
    Learn Mem; 2004; 11(5):517-24. PubMed ID: 15466302
    [TBL] [Abstract][Full Text] [Related]  

  • 32. REM sleep deprivation suppresses acquisition of classical eyeblink conditioning.
    Ohno H; Urushihara R; Sei H; Morita Y
    Sleep; 2002 Dec; 25(8):877-81. PubMed ID: 12489894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acquisition of differential delay eyeblink classical conditioning is independent of awareness.
    Smith CN; Clark RE; Manns JR; Squire LR
    Behav Neurosci; 2005 Feb; 119(1):78-86. PubMed ID: 15727514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissociating contingency awareness and conditioned attitudes: evidence of contingency-unaware evaluative conditioning.
    Hütter M; Sweldens S; Stahl C; Unkelbach C; Klauer KC
    J Exp Psychol Gen; 2012 Aug; 141(3):539-57. PubMed ID: 22201412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-methyl-D-aspartate receptors play important roles in acquisition and expression of the eyeblink conditioned response in glutamate receptor subunit delta2 mutant mice.
    Kato Y; Takatsuki K; Kawahara S; Fukunaga S; Mori H; Mishina M; Kirino Y
    Neuroscience; 2005; 135(4):1017-23. PubMed ID: 16165299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conditioning, awareness, and the hippocampus.
    LaBar KS; Disterhoft JF
    Hippocampus; 1998; 8(6):620-6. PubMed ID: 9882019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of contingency awareness in single-cue human eyeblink conditioning.
    Weidemann G; Best E; Lee JC; Lovibond PF
    Learn Mem; 2013 Jun; 20(7):363-6. PubMed ID: 23774766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perinatal nutritional iron deficiency impairs hippocampus-dependent trace eyeblink conditioning in rats.
    McEchron MD; Alexander DN; Gilmartin MR; Paronish MD
    Dev Neurosci; 2008; 30(4):243-54. PubMed ID: 17962715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Associative learning: classical eyeblink conditioning with special reference to the role of the higher nervous system].
    Kawahara S; Kirino Y
    Tanpakushitsu Kakusan Koso; 2004 Feb; 49(3 Suppl):493-8. PubMed ID: 14976778
    [No Abstract]   [Full Text] [Related]  

  • 40. [Classical conditioning in man and cognitive factors. I. Vegetative conditioning].
    Perruchet P
    Annee Psychol; 1979; 79(2):527-57. PubMed ID: 396874
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.