BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11868675)

  • 1. Comparing the variation of needle and wood terpenoids in Scots pine provenances.
    Manninen AM; Tarhanen S; Vuorinen M; Kainulaine P
    J Chem Ecol; 2002 Jan; 28(1):211-28. PubMed ID: 11868675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of wood terpenoids in the resistance of Scots pine provenances against the old house borer, Hylotrupes bajulus, and brown-rot fungus, Coniophora puteana.
    Nerg AM; Heijari J; Noldt U; Viitanen H; Vuorinen M; Kainulainen P; Holopainen JK
    J Chem Ecol; 2004 Jan; 30(1):125-41. PubMed ID: 15074661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings.
    Turtola S; Manninen AM; Rikala R; Kainulainen P
    J Chem Ecol; 2003 Sep; 29(9):1981-95. PubMed ID: 14584671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and implications of intraspecific and phenological variability in monoterpenes of Scots pine (Pinus sylvestris) foliage.
    Thoss V; O'Reilly-Wapstra J; Iason GR
    J Chem Ecol; 2007 Mar; 33(3):477-91. PubMed ID: 17268824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical compositions of essential oils of five introduced conifers in Corsica.
    Garcia G; Garcia A; Gibernau M; Bighelli A; Tomi F
    Nat Prod Res; 2017 Jul; 31(14):1697-1703. PubMed ID: 28278672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does climate-related in situ variability of Scots pine (Pinus sylvestris L.) needles have a genetic basis? Evidence from common garden experiments.
    Jankowski A; Wyka TP; Żytkowiak R; Danusevičius D; Oleksyn J
    Tree Physiol; 2019 Apr; 39(4):573-589. PubMed ID: 30715504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of summer drought on isoprenoid emissions and carbon sink of three Scots pine provenances.
    Lüpke M; Leuchner M; Steinbrecher R; Menzel A
    Tree Physiol; 2016 Nov; 36(11):1382-1399. PubMed ID: 27591438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary metabolite concentrations and terpene emissions of Scots pine xylem after long-term forest fertilization.
    Turtola S; Manninen AM; Holopainen JK; Levula T; Raitio H; Kainulainen P
    J Environ Qual; 2002; 31(5):1694-701. PubMed ID: 12371188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of experimentally elevated ozone on seed germination and growth of Russian pine (Pinus sylvestris) and spruce (Picea spp.) provenances.
    Prozherina N; Nakvasina E; Oksanen E
    Ambio; 2009 Dec; 38(8):443-7. PubMed ID: 20175444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wood structural differences between northern and southern beech provenances growing at a moderate site.
    Eilmann B; Sterck F; Wegner L; de Vries SM; von Arx G; Mohren GM; den Ouden J; Sass-Klaassen U
    Tree Physiol; 2014 Aug; 34(8):882-93. PubMed ID: 25163729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The essential oil qualitative and quantitative composition in the needles of Pinus sylvestris L. growing along industrial transects.
    Kupcinskiene E; Stikliene A; Judzentiene A
    Environ Pollut; 2008 Oct; 155(3):481-91. PubMed ID: 18372084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Chemical Composition of the Essential Oils from Different Botanical Organs of Pinus mugo Growing in Poland.
    Lis A; Lukas M; Mellor K
    Chem Biodivers; 2019 Oct; 16(10):e1900397. PubMed ID: 31475763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings.
    Turtola S; Sallas L; Holopainen JK; Julkunen-Tiitto R; Kainulainen P
    Environ Pollut; 2006 Nov; 144(1):166-71. PubMed ID: 16515828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and Survival Variation among Scots Pine (
    Gülcü S; Bilir N
    Int J Genomics; 2017; 2017():1904623. PubMed ID: 28133603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake of ¹³⁷Cs by berries, mushrooms and needles of Scots pine in peatland forests after wood ash application.
    Vetikko V; Rantavaara A; Moilanen M
    J Environ Radioact; 2010 Dec; 101(12):1055-60. PubMed ID: 20864229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of emission from oil shale fueled power plants on the growth and foliar elemental concentrations of Scots pine in Estonia.
    Ots K
    Environ Monit Assess; 2003 Jul; 85(3):293-308. PubMed ID: 12841691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partitioning of carbohydrates and biomass of needles in Scots pine canopy.
    Mandre M; Tullus H; Klõseiko J
    Z Naturforsch C J Biosci; 2002; 57(3-4):296-302. PubMed ID: 12064730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Observations of Mycosphaerella pini on Scots Pine in Finland.
    Müller MM; Hantula J; Vuorinen M
    Plant Dis; 2009 Mar; 93(3):322. PubMed ID: 30764195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced defenses change the chemical composition of pine seedlings and influence meal properties of the pine weevil Hylobius abietis.
    Lundborg L; Fedderwitz F; Björklund N; Nordlander G; Borg-Karlson AK
    Phytochemistry; 2016 Oct; 130():99-105. PubMed ID: 27417987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutral lipids and phospholipids in Scots pine (Pinus sylvestris) sapwood and heartwood.
    Piispanen R; Saranpää P
    Tree Physiol; 2002 Jun; 22(9):661-6. PubMed ID: 12069923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.