BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11869035)

  • 1. Biotinylated dextran amine as a marker for fetal hypothalamic homografts and their efferents.
    Nelms JL; LeSauter J; Silver R; Lehman MN
    Exp Neurol; 2002 Mar; 174(1):72-80. PubMed ID: 11869035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber outgrowth from anterior hypothalamic and cortical xenografts in the third ventricle.
    Lehman MN; Lesauter J; Silver R
    J Comp Neurol; 1998 Feb; 391(1):133-45. PubMed ID: 9527538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of circadian behavior by anterior hypothalamic heterografts.
    Sollars PJ; Kimble DP; Pickard GE
    J Neurosci; 1995 Mar; 15(3 Pt 2):2109-22. PubMed ID: 7534344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of circadian behavior by anterior hypothalamic grafts containing the suprachiasmatic nucleus: graft/host interconnections.
    Sollars PJ; Pickard GE
    Chronobiol Int; 1998 Sep; 15(5):513-33. PubMed ID: 9787939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do fetal grafts of the suprachiasmatic nucleus communicate with the host brain?
    Lehman MN; LeSauter J; Kim C; Berriman SJ; Tresco PA; Silver R
    Cell Transplant; 1995; 4(1):75-81. PubMed ID: 7728336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracing SCN graft efferents with Dil.
    Canbeyli RS; Lehman M; Silver R
    Brain Res; 1991 Jul; 554(1-2):15-21. PubMed ID: 1718547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasoactive intestinal peptide efferent projections of the suprachiasmatic nucleus in anterior hypothalamic transplants: correlation with functional restoration of circadian behavior.
    Sollars PJ; Pickard GE
    Exp Neurol; 1995 Nov; 136(1):1-11. PubMed ID: 7589329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Input from central nucleus of the amygdala efferents to pericoerulear dendrites, some of which contain tyrosine hydroxylase immunoreactivity.
    Van Bockstaele EJ; Chan J; Pickel VM
    J Neurosci Res; 1996 Aug; 45(3):289-302. PubMed ID: 8841990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course of fiber outgrowth from fetal anterior hypothalamic heterografts.
    Sollars PJ; Pickard GE
    Brain Res; 1993 Jun; 614(1-2):212-9. PubMed ID: 8348314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies.
    Veenman CL; Reiner A; Honig MG
    J Neurosci Methods; 1992 Mar; 41(3):239-54. PubMed ID: 1381034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for simultaneous demonstration of anterograde and retrograde connections in the brain: co-injections of biotinylated dextran amine and the beta subunit of cholera toxin.
    Coolen LM; Jansen HT; Goodman RL; Wood RI; Lehman MN
    J Neurosci Methods; 1999 Sep; 91(1-2):1-8. PubMed ID: 10522819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projections of the suprachiasmatic nucleus and ventral subparaventricular zone in the Nile grass rat (Arvicanthis niloticus).
    Schwartz MD; Urbanski HF; Nunez AA; Smale L
    Brain Res; 2011 Jan; 1367():146-61. PubMed ID: 20971082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anterograde and retrograde tracing with high molecular weight biotinylated dextran amine through thalamocortical and corticothalamic pathways.
    Zhang W; Xu D; Cui J; Jing X; Xu N; Liu J; Bai W
    Microsc Res Tech; 2017 Feb; 80(2):260-266. PubMed ID: 27862607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving the detailed structure of cortical and thalamic neurons in the adult rat brain with refined biotinylated dextran amine labeling.
    Ling C; Hendrickson ML; Kalil RE
    PLoS One; 2012; 7(11):e45886. PubMed ID: 23144777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thalamic paraventricular nucleus relays information from the suprachiasmatic nucleus to the amygdala: a combined anterograde and retrograde tracing study in the rat at the light and electron microscopic levels.
    Peng ZC; Bentivoglio M
    J Neurocytol; 2004 Jan; 33(1):101-16. PubMed ID: 15173635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presence of mu-opioid receptors in targets of efferent projections from the central nucleus of the amygdala to the nucleus of the solitary tract.
    Pickel VM; Colago EE
    Synapse; 1999 Aug; 33(2):141-52. PubMed ID: 10400892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus.
    Shink E; Sidibé M; Smith Y
    J Comp Neurol; 1997 Jun; 382(3):348-63. PubMed ID: 9183698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of fetal neocortical transplants on lesion-induced cerebral cortex plasticity.
    Schulz MK; Sørensen JC; Tillotson GL; Castro AJ; Zimmer J
    Cell Transplant; 1996; 5(2):279-86. PubMed ID: 8689038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fetal neocortical tissue blocks implanted in brain infarcts of adult rats interconnect with the host brain.
    Sorensen JC; Grabowski M; Zimmer J; Johansson BB
    Exp Neurol; 1996 Apr; 138(2):227-35. PubMed ID: 8620921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis.
    Kriegsfeld LJ; Leak RK; Yackulic CB; LeSauter J; Silver R
    J Comp Neurol; 2004 Jan; 468(3):361-79. PubMed ID: 14681931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.