BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 11869790)

  • 41. Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community.
    Singh BK; Nazaries L; Munro S; Anderson IC; Campbell CD
    Appl Environ Microbiol; 2006 Nov; 72(11):7278-85. PubMed ID: 16936053
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analyses of microbial activity in biomass-recycle reactors using denaturing gradient gel electrophoresis of 16S rDNA and 16S rRNA PCR products.
    Morgan CA; Hudson A; Konopka A; Nakatsu CH
    Can J Microbiol; 2002 Apr; 48(4):333-41. PubMed ID: 12030706
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the bacterial community of a zinc-polluted soil.
    Brim H; Heuer H; Krögerrecklenfort E; Mergeay M; Smalla K
    Can J Microbiol; 1999 Apr; 45(4):326-38. PubMed ID: 10420584
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of mutans streptococci by restriction fragment length polymorphism analysis of polymerase chain reaction-amplified 16S ribosomal RNA genes.
    Sato T; Hu JP; Ohki K; Yamaura M; Washio J; Matsuyama J; Takahashi N
    Oral Microbiol Immunol; 2003 Oct; 18(5):323-6. PubMed ID: 12930526
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of peptide nucleic acid (PNA)-PCR clamping technique to investigate the community structures of rhizobacteria associated with plant roots.
    Sakai M; Ikenaga M
    J Microbiol Methods; 2013 Mar; 92(3):281-8. PubMed ID: 23313555
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple displacement amplification as a pre-polymerase chain reaction (pre-PCR) to process difficult to amplify samples and low copy number sequences from natural environments.
    Gonzalez JM; Portillo MC; Saiz-Jimenez C
    Environ Microbiol; 2005 Jul; 7(7):1024-8. PubMed ID: 15946299
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Rapid and Economical Method for Efficient DNA Extraction from Diverse Soils Suitable for Metagenomic Applications.
    Devi SG; Fathima AA; Radha S; Arunraj R; Curtis WR; Ramya M
    PLoS One; 2015; 10(7):e0132441. PubMed ID: 26167854
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA extraction method affects microbial community profiles from soils and sediment.
    Carrigg C; Rice O; Kavanagh S; Collins G; O'Flaherty V
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):955-64. PubMed ID: 17960375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of two bacterial DNA extraction methods from non-polluted and polluted soils.
    Mazziotti M; Henry S; Laval-Gilly P; Bonnefoy A; Falla J
    Folia Microbiol (Praha); 2018 Jan; 63(1):85-92. PubMed ID: 28667598
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolate PM1 populations are dominant and novel methyl tert-butyl ether-degrading bacterial in compost biofilter enrichments.
    Bruns MA; Hanson JR; Mefford J; Scow KM
    Environ Microbiol; 2001 Mar; 3(3):220-5. PubMed ID: 11321538
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improvements for comparative analysis of changes in diversity of microbial communities using internal standards in PCR-DGGE.
    Petersen DG; Dahllöf I
    FEMS Microbiol Ecol; 2005 Aug; 53(3):339-48. PubMed ID: 16329953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polymerase chain reaction primers miss half of rRNA microbial diversity.
    Hong S; Bunge J; Leslin C; Jeon S; Epstein SS
    ISME J; 2009 Dec; 3(12):1365-73. PubMed ID: 19693101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes.
    Fracchia L; Dohrmann AB; Martinotti MG; Tebbe CC
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):942-52. PubMed ID: 16395545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of methods to recover DNA from bacteria, fungi and archaea in complex environmental samples.
    Guillén-Navarro K; Herrera-López D; López-Chávez MY; Cancino-Gómez M; Reyes-Reyes AL
    Folia Microbiol (Praha); 2015 Nov; 60(6):551-8. PubMed ID: 26014885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced method for microbial community DNA extraction and purification from agricultural yellow loess soil.
    Kathiravan MN; Gim GH; Ryu J; Kim PI; Lee CW; Kim SW
    J Microbiol; 2015 Nov; 53(11):767-75. PubMed ID: 26502961
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Soil microbial community analysis using two-dimensional polyacrylamide gel electrophoresis of the bacterial ribosomal internal transcribed spacer regions.
    Jones CM; Thies JE
    J Microbiol Methods; 2007 May; 69(2):256-67. PubMed ID: 17343936
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies.
    Brooks JP; Edwards DJ; Harwich MD; Rivera MC; Fettweis JM; Serrano MG; Reris RA; Sheth NU; Huang B; Girerd P; ; Strauss JF; Jefferson KK; Buck GA
    BMC Microbiol; 2015 Mar; 15():66. PubMed ID: 25880246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An effective method of DNA extraction for bioleaching bacteria from acid mine drainage.
    Zeng L; Huang J; Zhang Y; Qiu G; Tong J; Chen D; Zhou J; Luo X
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):881-8. PubMed ID: 18481056
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: methodological settings and fingerprints interpretation.
    Lyautey E; Lacoste B; Ten-Hage L; Rols JL; Garabetian F
    Water Res; 2005; 39(2-3):380-8. PubMed ID: 15644246
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment.
    Hongoh Y; Yuzawa H; Ohkuma M; Kudo T
    FEMS Microbiol Lett; 2003 Apr; 221(2):299-304. PubMed ID: 12725942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.