BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11870790)

  • 1. Free-electron laser and heat-conducting templates: a study of reducing cutaneous lateral thermal damage.
    Spector N; Reinisch L; Spector J; Ellis DL
    Lasers Surg Med; 2002; 30(2):117-22. PubMed ID: 11870790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction in lateral thermal damage using heat-conducting templates: a comparison of continuous wave and pulsed CO2 lasers.
    Spector N; Spector J; Ellis DL; Reinisch L
    Lasers Surg Med; 2003; 32(2):94-100. PubMed ID: 12561041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wound healing of 6.45-microm free electron laser skin incisions with heat-conducting templates.
    Robbins JB; Reinisch L; Ellis DL
    J Biomed Opt; 2003 Oct; 8(4):594-600. PubMed ID: 14563196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling thermal damage of incisions using diamond, copper, and sapphire heat-conducting templates with and without cooling.
    Ellis DL; Kozub J; Reinisch L
    Lasers Surg Med; 2006 Oct; 38(9):814-23. PubMed ID: 16998914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing free electron laser incisions at 6.45 microm with computer-assisted surgical techniques and the utilization of a heat-conducting template.
    Robbins JB; Reinisch L; Ellis DL
    Lasers Surg Med; 2001; 28(2):162-7. PubMed ID: 11241525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wound healing and collagen thermal damage in 7.5-microsec pulsed CO(2) laser skin incisions.
    Sanders DL; Reinisch L
    Lasers Surg Med; 2000; 26(1):22-32. PubMed ID: 10637000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective laser ablation of bone based on the absorption characteristics of water and proteins.
    Spencer P; Payne JM; Cobb CM; Reinisch L; Peavy GM; Drummer DD; Suchman DL; Swafford JR
    J Periodontol; 1999 Jan; 70(1):68-74. PubMed ID: 10052773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological and clinical evaluation of facial resurfacing using a carbon dioxide laser with the computer pattern generator.
    Rubach BW; Schoenrock LD
    Arch Otolaryngol Head Neck Surg; 1997 Sep; 123(9):929-34. PubMed ID: 9305242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a novel erbium laser in a Yucatan minipig: a study of residual thermal damage, ablation, and wound healing as a function of pulse duration.
    Ross EV; McKinlay JR; Sajben FP; Miller CH; Barnette DJ; Meehan KJ; Chhieng NP; Deavers MJ; Zelickson BD
    Lasers Surg Med; 2002; 30(2):93-100. PubMed ID: 11870787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free electron laser infrared wavelength specificity for cutaneous contraction.
    Ellis DL; Weisberg NK; Chen JS; Stricklin GP; Reinisch L
    Lasers Surg Med; 1999; 25(1):1-7. PubMed ID: 10421880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 microm, 2.79 microm, and 0.355 microm laser pulses.
    Dela Rosa A; Sarma AV; Le CQ; Jones RS; Fried D
    Lasers Surg Med; 2004; 35(3):214-28. PubMed ID: 15389737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of pulsed CO2 laser ablation at 10.6 microm and 9.5 microm.
    Payne BP; Nishioka NS; Mikic BB; Venugopalan V
    Lasers Surg Med; 1998; 23(1):1-6. PubMed ID: 9694144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling.
    Paithankar DY; Clifford JM; Saleh BA; Ross EV; Hardaway CA; Barnette D
    J Biomed Opt; 2003 Jul; 8(3):545-51. PubMed ID: 12880362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of CO2 laser pulse duration in ablation and residual thermal damage: implications for skin resurfacing.
    Ross EV; Domankevitz Y; Skrobal M; Anderson RR
    Lasers Surg Med; 1996; 19(2):123-9. PubMed ID: 8887913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of wound healing using the CO2 laser at 10.6 microm and 9.55 microm.
    Converse GM; Ries WR; Reinisch L
    Laryngoscope; 2001 Jul; 111(7):1231-6. PubMed ID: 11568546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Management of heat in laser tissue welding using NIR cover window material.
    Sriramoju V; Savage H; Katz A; Muthukattil R; Alfano RR
    Lasers Surg Med; 2011 Dec; 43(10):991-7. PubMed ID: 22127755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery.
    Kaufmann R; Hartmann A; Hibst R
    J Dermatol Surg Oncol; 1994 Feb; 20(2):112-8. PubMed ID: 8113503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide laser skin resurfacing with a cooled handpiece.
    Moore BA; Daamen N; Biesman BS; Reinisch L
    Lasers Surg Med; 2001; 29(3):236-43. PubMed ID: 11573225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cutaneous side effects from laser treatment of the skin: skin cancer, scars, wounds, pigmentary changes, and purpura--use of pulsed dye laser, copper vapor laser, and argon laser.
    Haedersdal M
    Acta Derm Venereol Suppl (Stockh); 1999; 207():1-32. PubMed ID: 10605602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen thermal damage and collagen synthesis after cutaneous laser resurfacing.
    Kuo T; Speyer MT; Ries WR; Reinisch L
    Lasers Surg Med; 1998; 23(2):66-71. PubMed ID: 9738540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.