BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 11870856)

  • 21. Candida albicans MTLalpha tup1Delta mutants can reversibly switch to mating-competent, filamentous growth forms.
    Park YN; Morschhäuser J
    Mol Microbiol; 2005 Dec; 58(5):1288-302. PubMed ID: 16313617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sec20p-interacting proteins (Tip20p, Ufe1p) in the retrograde secretory pathway of the fungal pathogen Candida albicans.
    Weber Y; Swoboda RK; Ernst JF
    Mol Genet Genomics; 2002 Dec; 268(4):468-76. PubMed ID: 12471444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae.
    Yun CW; Bauler M; Moore RE; Klebba PE; Philpott CC
    J Biol Chem; 2001 Mar; 276(13):10218-23. PubMed ID: 11120744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans.
    Biswas K; Morschhäuser J
    Mol Microbiol; 2005 May; 56(3):649-69. PubMed ID: 15819622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization.
    Weissman Z; Kornitzer D
    Mol Microbiol; 2004 Aug; 53(4):1209-20. PubMed ID: 15306022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Cloning and functional study of CaPPe1 in Candida albicans by using Saccharomyses cerevisiae model system].
    Cao F; Chen JY
    Shi Yan Sheng Wu Xue Bao; 2005 Apr; 38(2):119-25. PubMed ID: 16011244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p.
    Bensen ES; Martin SJ; Li M; Berman J; Davis DA
    Mol Microbiol; 2004 Dec; 54(5):1335-51. PubMed ID: 15554973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Negative regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by a Candida albicans orthologue of OPI1.
    Heyken WT; Wagner C; Wittmann J; Albrecht A; Schüller HJ
    Yeast; 2003 Oct; 20(14):1177-88. PubMed ID: 14587102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
    Jensen LT; Culotta VC
    J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans.
    Urban C; Xiong X; Sohn K; Schröppel K; Brunner H; Rupp S
    Mol Microbiol; 2005 Sep; 57(5):1318-41. PubMed ID: 16102003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans.
    Umeyama T; Kaneko A; Watanabe H; Hirai A; Uehara Y; Niimi M; Azuma M
    Infect Immun; 2006 Apr; 74(4):2373-81. PubMed ID: 16552067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of Candida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors.
    Pelletier B; Mercier A; Durand M; Peter C; Jbel M; Beaudoin J; Labbé S
    Yeast; 2007 Oct; 24(10):883-900. PubMed ID: 17724773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4.
    Lee SA; Jones J; Khalique Z; Kot J; Alba M; Bernardo S; Seghal A; Wong B
    FEMS Yeast Res; 2007 Sep; 7(6):973-85. PubMed ID: 17506830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans.
    Oberegger H; Schoeser M; Zadra I; Abt B; Haas H
    Mol Microbiol; 2001 Sep; 41(5):1077-89. PubMed ID: 11555288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulatory networks affected by iron availability in Candida albicans.
    Lan CY; Rodarte G; Murillo LA; Jones T; Davis RW; Dungan J; Newport G; Agabian N
    Mol Microbiol; 2004 Sep; 53(5):1451-69. PubMed ID: 15387822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane.
    Kwok EY; Severance S; Kosman DJ
    Biochemistry; 2006 May; 45(20):6317-27. PubMed ID: 16700543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of genes involved in siderophore transport in Streptomyces coelicolor A3(2).
    Bunet R; Brock A; Rexer HU; Takano E
    FEMS Microbiol Lett; 2006 Sep; 262(1):57-64. PubMed ID: 16907739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A family of oligopeptide transporters is required for growth of Candida albicans on proteins.
    Reuss O; Morschhäuser J
    Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional identification of high-affinity iron permeases from Fusarium graminearum.
    Park YS; Choi ID; Kang CM; Ham MS; Kim JH; Kim TH; Yun SH; Lee YW; Chang HI; Sung HC; Yun CW
    Fungal Genet Biol; 2006 Apr; 43(4):273-82. PubMed ID: 16464625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The disruption of JEN1 from Candida albicans impairs the transport of lactate.
    Soares-Silva I; Paiva S; Kötter P; Entian KD; Casal M
    Mol Membr Biol; 2004; 21(6):403-11. PubMed ID: 15764370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.