These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 11870856)
21. Candida albicans MTLalpha tup1Delta mutants can reversibly switch to mating-competent, filamentous growth forms. Park YN; Morschhäuser J Mol Microbiol; 2005 Dec; 58(5):1288-302. PubMed ID: 16313617 [TBL] [Abstract][Full Text] [Related]
22. Sec20p-interacting proteins (Tip20p, Ufe1p) in the retrograde secretory pathway of the fungal pathogen Candida albicans. Weber Y; Swoboda RK; Ernst JF Mol Genet Genomics; 2002 Dec; 268(4):468-76. PubMed ID: 12471444 [TBL] [Abstract][Full Text] [Related]
23. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. Yun CW; Bauler M; Moore RE; Klebba PE; Philpott CC J Biol Chem; 2001 Mar; 276(13):10218-23. PubMed ID: 11120744 [TBL] [Abstract][Full Text] [Related]
25. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Weissman Z; Kornitzer D Mol Microbiol; 2004 Aug; 53(4):1209-20. PubMed ID: 15306022 [TBL] [Abstract][Full Text] [Related]
26. [Cloning and functional study of CaPPe1 in Candida albicans by using Saccharomyses cerevisiae model system]. Cao F; Chen JY Shi Yan Sheng Wu Xue Bao; 2005 Apr; 38(2):119-25. PubMed ID: 16011244 [TBL] [Abstract][Full Text] [Related]
27. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Bensen ES; Martin SJ; Li M; Berman J; Davis DA Mol Microbiol; 2004 Dec; 54(5):1335-51. PubMed ID: 15554973 [TBL] [Abstract][Full Text] [Related]
28. Negative regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by a Candida albicans orthologue of OPI1. Heyken WT; Wagner C; Wittmann J; Albrecht A; Schüller HJ Yeast; 2003 Oct; 20(14):1177-88. PubMed ID: 14587102 [TBL] [Abstract][Full Text] [Related]
29. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron. Jensen LT; Culotta VC J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835 [TBL] [Abstract][Full Text] [Related]
30. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Urban C; Xiong X; Sohn K; Schröppel K; Brunner H; Rupp S Mol Microbiol; 2005 Sep; 57(5):1318-41. PubMed ID: 16102003 [TBL] [Abstract][Full Text] [Related]
31. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Umeyama T; Kaneko A; Watanabe H; Hirai A; Uehara Y; Niimi M; Azuma M Infect Immun; 2006 Apr; 74(4):2373-81. PubMed ID: 16552067 [TBL] [Abstract][Full Text] [Related]
32. Expression of Candida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors. Pelletier B; Mercier A; Durand M; Peter C; Jbel M; Beaudoin J; Labbé S Yeast; 2007 Oct; 24(10):883-900. PubMed ID: 17724773 [TBL] [Abstract][Full Text] [Related]
33. A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4. Lee SA; Jones J; Khalique Z; Kot J; Alba M; Bernardo S; Seghal A; Wong B FEMS Yeast Res; 2007 Sep; 7(6):973-85. PubMed ID: 17506830 [TBL] [Abstract][Full Text] [Related]
34. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Oberegger H; Schoeser M; Zadra I; Abt B; Haas H Mol Microbiol; 2001 Sep; 41(5):1077-89. PubMed ID: 11555288 [TBL] [Abstract][Full Text] [Related]
35. Regulatory networks affected by iron availability in Candida albicans. Lan CY; Rodarte G; Murillo LA; Jones T; Davis RW; Dungan J; Newport G; Agabian N Mol Microbiol; 2004 Sep; 53(5):1451-69. PubMed ID: 15387822 [TBL] [Abstract][Full Text] [Related]
36. Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane. Kwok EY; Severance S; Kosman DJ Biochemistry; 2006 May; 45(20):6317-27. PubMed ID: 16700543 [TBL] [Abstract][Full Text] [Related]
37. Identification of genes involved in siderophore transport in Streptomyces coelicolor A3(2). Bunet R; Brock A; Rexer HU; Takano E FEMS Microbiol Lett; 2006 Sep; 262(1):57-64. PubMed ID: 16907739 [TBL] [Abstract][Full Text] [Related]
38. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Reuss O; Morschhäuser J Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678 [TBL] [Abstract][Full Text] [Related]
39. Functional identification of high-affinity iron permeases from Fusarium graminearum. Park YS; Choi ID; Kang CM; Ham MS; Kim JH; Kim TH; Yun SH; Lee YW; Chang HI; Sung HC; Yun CW Fungal Genet Biol; 2006 Apr; 43(4):273-82. PubMed ID: 16464625 [TBL] [Abstract][Full Text] [Related]
40. The disruption of JEN1 from Candida albicans impairs the transport of lactate. Soares-Silva I; Paiva S; Kötter P; Entian KD; Casal M Mol Membr Biol; 2004; 21(6):403-11. PubMed ID: 15764370 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]