These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. Modeling membranes under a transmembrane potential. Delemotte L; Dehez F; Treptow W; Tarek M J Phys Chem B; 2008 May; 112(18):5547-50. PubMed ID: 18412411 [TBL] [Abstract][Full Text] [Related]
29. Synthesis of minigramicidin ion channels and test of their hydrophobic match with the membrane. Arndt HD; Knoll A; Koert U Chembiochem; 2001 Mar; 2(3):221-3. PubMed ID: 11828448 [No Abstract] [Full Text] [Related]
30. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers. Oliver AE; Deamer DW Biophys J; 1994 May; 66(5):1364-79. PubMed ID: 7520289 [TBL] [Abstract][Full Text] [Related]
31. [Activity of toxins produced by Pseudomonas syringae pv. syringae in model and cell membranes]. Gur'nev FA; Kaulin IuA; Tikhomirova AV; Wangspa R; Takemoto D; Malev VV; Shchagina LV Tsitologiia; 2002; 44(3):296-304. PubMed ID: 12094768 [TBL] [Abstract][Full Text] [Related]
32. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy. Huang W; Zhang Z; Han X; Tang J; Wang J; Dong S; Wang E Biophys J; 2002 Dec; 83(6):3245-55. PubMed ID: 12496093 [TBL] [Abstract][Full Text] [Related]
33. Ion channel formation from a calix[4]arene amide that binds HCl. Sidorov V; Kotch FW; Abdrakhmanova G; Mizani R; Fettinger JC; Davis JT J Am Chem Soc; 2002 Mar; 124(10):2267-78. PubMed ID: 11878981 [TBL] [Abstract][Full Text] [Related]
34. Ion channel-like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers. Salay LC; Procopio J; Oliveira E; Nakaie CR; Schreier S FEBS Lett; 2004 May; 565(1-3):171-5. PubMed ID: 15135074 [TBL] [Abstract][Full Text] [Related]
35. Ionic channel behavior of modified cyclodextrins inserted in lipid membranes. Bacri L; Benkhaled A; Guégan P; Auvray L Langmuir; 2005 Jun; 21(13):5842-6. PubMed ID: 15952831 [TBL] [Abstract][Full Text] [Related]
36. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels. Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178 [TBL] [Abstract][Full Text] [Related]
37. A lipid dependence in the formation of twin ion channels. Al-Momani L; Reiss P; Koert U Biochem Biophys Res Commun; 2005 Mar; 328(1):342-7. PubMed ID: 15670789 [TBL] [Abstract][Full Text] [Related]
38. Investigating structural changes in the lipid bilayer upon insertion of the transmembrane domain of the membrane-bound protein phospholamban utilizing 31P and 2H solid-state NMR spectroscopy. Dave PC; Tiburu EK; Damodaran K; Lorigan GA Biophys J; 2004 Mar; 86(3):1564-73. PubMed ID: 14990483 [TBL] [Abstract][Full Text] [Related]
39. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Woolf TB; Roux B Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11631-5. PubMed ID: 7526400 [TBL] [Abstract][Full Text] [Related]
40. Synthesis and characterization of a redox-active ion channel supporting cation flux in lipid bilayers. Tsikolia M; Hall AC; Suarez C; Nylander ZO; Wardlaw SM; Gibson ME; Valentine KL; Onyewadume LN; Ahove DA; Woodbury M; Mongare MM; Hall CD; Wang Z; Draghici B; Katritzky AR Org Biomol Chem; 2009 Sep; 7(18):3862-70. PubMed ID: 19707694 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]