BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11872172)

  • 1. Second derivative fluorescence spectra of indole compounds.
    Nayar S; Brahma A; Mukherjee C; Bhattacharyya D
    J Biochem; 2002 Mar; 131(3):427-35. PubMed ID: 11872172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between the wavelength maximum of a protein and the temperature dependence of its intrinsic tryptophan fluorescence intensity.
    Saini K; Deep S
    Eur Biophys J; 2010 Sep; 39(10):1445-51. PubMed ID: 20376437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Second derivative fluorescence spectroscopy of tryptophan in proteins.
    Mozo-Villarías A
    J Biochem Biophys Methods; 2002 Jan; 50(2-3):163-78. PubMed ID: 11741705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally stable harpin, HrpZPss is sensitive to chemical denaturants: probing tryptophan environment, chemical and thermal unfolding by fluorescence spectroscopy.
    Tarafdar PK; Vedantam LV; Podile AR; Swamy MJ
    Biochimie; 2013 Dec; 95(12):2437-44. PubMed ID: 24055159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distance-dependent fluorescence quenching of tryptophan by acrylamide.
    Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML
    Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-induced structural change of a multi-tryptophan protein MPT63 with immunoglobulin-like fold: identification of perturbed tryptophan residue/residues.
    Mukherjee M; Ghosh R; Chattopadhyay K; Ghosh S
    J Biomol Struct Dyn; 2015; 33(10):2145-60. PubMed ID: 25599137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy.
    Mach H; Middaugh CR
    Anal Biochem; 1994 Nov; 222(2):323-31. PubMed ID: 7864355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure and dynamics of partially folded actin.
    Turoverov KK; Biktashev AG; Khaitlina SY; Kuznetsova IM
    Biochemistry; 1999 May; 38(19):6261-9. PubMed ID: 10320355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The single tryptophan of the PsbQ protein of photosystem II is at the end of a 4-alpha-helical bundle domain.
    Balsera M; Arellano JB; Pazos F; Devos D; Valencia A; De Las Rivas J
    Eur J Biochem; 2003 Oct; 270(19):3916-27. PubMed ID: 14511373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide sequence and conformation strongly influence tryptophan fluorescence.
    Alston RW; Lasagna M; Grimsley GR; Scholtz JM; Reinhart GD; Pace CN
    Biophys J; 2008 Mar; 94(6):2280-7. PubMed ID: 18065477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions.
    Žoldák G; Jancura D; Sedlák E
    Protein Sci; 2017 Jun; 26(6):1236-1239. PubMed ID: 28370732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence properties of native and photooxidised proteinase K: the X-ray model in the region of the two tryptophans.
    Dolashka P; Dimov I; Genov N; Svendsen I; Wilson KS; Betzel C
    Biochim Biophys Acta; 1992 Feb; 1118(3):303-12. PubMed ID: 1737054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of barstar.
    Swaminathan R; Nath U; Udgaonkar JB; Periasamy N; Krishnamoorthy G
    Biochemistry; 1996 Jul; 35(28):9150-7. PubMed ID: 8703920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence quenching of buried Trp residues by acrylamide does not require penetration of the protein fold.
    Strambini GB; Gonnelli M
    J Phys Chem B; 2010 Jan; 114(2):1089-93. PubMed ID: 19924836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The light-induced reactions of tryptophan with halocompounds.
    Edwards RA; Jickling G; Turner RJ
    Photochem Photobiol; 2002 Apr; 75(4):362-8. PubMed ID: 12003125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding of tryptophan mutants of barstar: evidence for an initial hydrophobic collapse on the folding pathway.
    Nath U; Udgaonkar JB
    Biochemistry; 1997 Jul; 36(28):8602-10. PubMed ID: 9214306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II.
    Ruan K; Li J; Liang R; Xu C; Yu Y; Lange R; Balny C
    Biochem Biophys Res Commun; 2002 Apr; 293(1):593-7. PubMed ID: 12054643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change.
    Tang L; van Merode AE; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 Dec; 42(47):14057-65. PubMed ID: 14636074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved and steady-state fluorescence quenching of N-acetyl-L-tryptophanamide by acrylamide and iodide.
    Zelent B; Kuśba J; Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1998 Jul; 73(1-2):53-75. PubMed ID: 9697300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.