These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11872172)

  • 41. Tryptophan fluorescence of the lux-specific Vibrio harveyi acyl-ACP thioesterase and its tryptophan mutants: structural properties and ligand-induced conformational change.
    Li J; Szittner R; Meighen EA
    Biochemistry; 1998 Nov; 37(46):16130-8. PubMed ID: 9819205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan.
    Wright WW; Guffanti GT; Vanderkooi JM
    Biophys J; 2003 Sep; 85(3):1980-95. PubMed ID: 12944311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intrinsic tryptophans of CRABPI as probes of structure and folding.
    Clark PL; Liu ZP; Zhang J; Gierasch LM
    Protein Sci; 1996 Jun; 5(6):1108-17. PubMed ID: 8762142
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system.
    Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT
    Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tyrosine/tyrosinate fluorescence at 700 MPa: a pressure unfolding study of chicken ovomucoid at pH 12.
    Maeno A; Matsuo H; Akasaka K
    Biophys Chem; 2013 Dec; 183():57-63. PubMed ID: 23953399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of folding of the IgG binding domain of peptostreptococcal protein L.
    Scalley ML; Yi Q; Gu H; McCormack A; Yates JR; Baker D
    Biochemistry; 1997 Mar; 36(11):3373-82. PubMed ID: 9116017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amphipathic alpha-helix bundle organization of lipid-free chicken apolipoprotein A-I.
    Kiss RS; Kay CM; Ryan RO
    Biochemistry; 1999 Apr; 38(14):4327-34. PubMed ID: 10194351
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues.
    Ogata N
    Biochemistry; 2007 Apr; 46(16):4898-911. PubMed ID: 17397139
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
    Hoeltzli SD; Frieden C
    Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-tryptophan mutants of monomeric tryptophan repressor: optical spectroscopy reveals nonnative structure in a model for an early folding intermediate.
    Shao X; Matthews CR
    Biochemistry; 1998 May; 37(21):7850-8. PubMed ID: 9601046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Urea-induced equilibrium unfolding of single tryptophan mutants of yeast phosphoglycerate kinase: evidence for a stable intermediate.
    Szpikowska BK; Mas MT
    Arch Biochem Biophys; 1996 Nov; 335(1):173-82. PubMed ID: 8914848
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dipolar relaxation in proteins on the nanosecond timescale observed by wavelength-resolved phase fluorometry of tryptophan fluorescence.
    Lakowicz JR; Cherek H
    J Biol Chem; 1980 Feb; 255(3):831-4. PubMed ID: 7356662
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stopped-flow NMR spectroscopy: real-time unfolding studies of 6-19F-tryptophan-labeled Escherichia coli dihydrofolate reductase.
    Hoeltzli SD; Frieden C
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9318-22. PubMed ID: 7568125
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermal transitions in the structure of tubulin. Environments of aromatic aminoacids.
    Mozo-Villarías A; Morros A; Andreu JM
    Eur Biophys J; 1991; 19(6):295-300. PubMed ID: 1915154
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intrinsic tryptophan fluorescence of human serum proteins and related conformational changes.
    Gorinstein S; Goshev I; Moncheva S; Zemser M; Weisz M; Caspi A; Libman I; Lerner HT; Trakhtenberg S; Martín-Belloso O
    J Protein Chem; 2000 Nov; 19(8):637-42. PubMed ID: 11307947
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selective excitation of tryptophans in OmpF: a fluorescence emission study.
    Pattnaik BR; Ghosh S; Rajeswari MR
    Biochem Mol Biol Int; 1997 Jun; 42(1):173-81. PubMed ID: 9192098
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical and hydrodynamic studies of the structure of bacteriophage f2. II. Fluorescence of the capsid.
    Kitchell BB; Merrill SP; Henkens RW
    Biochim Biophys Acta; 1977 Apr; 475(3):536-47. PubMed ID: 851538
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorescence studies on native and bound to trifluraline soy bean Lb"a" in the enhanced N2 fixation.
    Kolev K; Dolashka-Angelova P
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Oct; 57(12):2535-45. PubMed ID: 11767847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Parametric models to compute tryptophan fluorescence wavelengths from classical protein simulations.
    Lopez AJ; Martínez L
    J Comput Chem; 2018 Jul; 39(19):1249-1258. PubMed ID: 29484676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.