These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11872172)

  • 61. C-terminal functional unit of Rapana thomasiana (marine snail, gastropod) hemocyanin isoform RtH1: isolation and characterization.
    Parvanova K; Idakieva K; Todinova S; Genov N
    Biochim Biophys Acta; 2003 Sep; 1651(1-2):153-62. PubMed ID: 14499600
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins.
    Mach H; Middaugh CR; Lewis RV
    Anal Biochem; 1992 Jan; 200(1):74-80. PubMed ID: 1595904
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Native fluorescence detection and spectral differentiation of peptides containing tryptophan and tyrosine in capillary electrophoresis.
    Timperman AT; Oldenburg KE; Sweedler JV
    Anal Chem; 1995 Oct; 67(19):3421-6. PubMed ID: 8686891
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tryptophan photophysics in rabbit skeletal myosin rod.
    Chang YC; Ludescher RD
    Biophys Chem; 1994 Mar; 49(2):113-26. PubMed ID: 8155813
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Non-fluorescent transient states of tyrosine as a basis for label-free protein conformation and interaction studies.
    Bagheri N; Chen H; Rabasovic M; Widengren J
    Sci Rep; 2024 Mar; 14(1):6464. PubMed ID: 38499633
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Second derivative analysis of synthesized spectra for resolution and identification of overlapped absorption bands of amino acid residues in proteins: Bromelain and ficin spectra in the 240-320 nm range.
    Lavrinenko IA; Holyavka MG; Chernov VE; Artyukhov VG
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117722. PubMed ID: 31707026
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra.
    Lakowicz JR; Jayaweera R; Szmacinski H; Wiczk W
    Photochem Photobiol; 1989 Oct; 50(4):541-6. PubMed ID: 2594838
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Role of Charged Amino Acids in Sullying the Fluorescence of Tryptophan or Conjugated Dansyl Probe in Monomeric Proteins.
    Kumar A; Alom SE; Ahari D; Priyadarshi A; Ansari MZ; Swaminathan R
    Biochemistry; 2022 Mar; 61(5):339-353. PubMed ID: 35107253
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Determining the fluorescence spectrum of a protein.
    Pain RH
    Curr Protoc Protein Sci; 2005 Jan; Chapter 7():7.7.1-7.7.20. PubMed ID: 18429291
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A spectrofluorometric study of the environment of tryptophans in bacteriorhodopsin.
    Permyakov EA; Shnyrov VL
    Biophys Chem; 1983 Sep; 18(2):145-52. PubMed ID: 17005125
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Using tryptophan fluorescence to measure the stability of membrane proteins folded in liposomes.
    Moon CP; Fleming KG
    Methods Enzymol; 2011; 492():189-211. PubMed ID: 21333792
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Second derivative spectrophotometry as an effective tool for examining phenylalanine residues in proteins.
    Ichikawa T; Terada H
    Biochim Biophys Acta; 1977 Sep; 494(1):267-70. PubMed ID: 901809
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The individual tyrosines of proteins: their spectra may or may not differ from those in water or other solvents.
    Kornblatt JA; Kornblatt MJ; Lange R; Mombelli E; Guillemette JG
    Biochim Biophys Acta; 1999 Apr; 1431(1):238-48. PubMed ID: 10209296
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Visible Light Degradation of a Monoclonal Antibody in a High-Concentration Formulation: Characterization of a Tryptophan-Derived Chromophoric Photo-product by Comparison to Photo-degradation of
    Prajapati I; Larson NR; Choudhary S; Kalonia C; Hudak S; Esfandiary R; Middaugh CR; Schöneich C
    Mol Pharm; 2021 Sep; 18(9):3223-3234. PubMed ID: 34482697
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Protein quantification and visualization via ultraviolet-dependent labeling with 2,2,2-trichloroethanol.
    Chopra A; Willmore WG; Biggar KK
    Sci Rep; 2019 Sep; 9(1):13923. PubMed ID: 31558752
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Examination of phenylalanine microenvironments in proteins by second-derivative absorption spectroscopy.
    Mach H; Thomson JA; Middaugh CR; Lewis RV
    Arch Biochem Biophys; 1991 May; 287(1):33-40. PubMed ID: 1897992
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Second derivative spectroscopy of enolase at high hydrostatic pressure: an approach to the study of macromolecular interactions.
    Kornblatt JA; Kornblatt MJ; Hoa GH
    Biochemistry; 1995 Jan; 34(4):1218-23. PubMed ID: 7827071
    [TBL] [Abstract][Full Text] [Related]  

  • 78. What causes the variation of polarization degree across the emission spectrum of proteins?
    Turoverov KK; Kuznetsova IM
    Biophys Chem; 1986 Aug; 24(3):327-35. PubMed ID: 3768475
    [TBL] [Abstract][Full Text] [Related]  

  • 79. On 'Fluorescence and the structure of proteins. I. Effects of substituents on the fluorescence of indole and phenol compounds' by Robert W. Cowgill.
    Prieto M
    Arch Biochem Biophys; 2022 Sep; 726():109270. PubMed ID: 35561810
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reprint of: Fluorescence and the Structure of Proteins. I. Effects of Substituents on the Fluorescence of Indole and Phenol Compounds.
    Cowgill RW
    Arch Biochem Biophys; 2022 Sep; 726():109234. PubMed ID: 35667905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.