BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 11872398)

  • 1. Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets.
    Coombs GH; Goldberg DE; Klemba M; Berry C; Kay J; Mottram JC
    Trends Parasitol; 2001 Nov; 17(11):532-7. PubMed ID: 11872398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting polyamines of parasitic protozoa in chemotherapy.
    Müller S; Coombs GH; Walter RD
    Trends Parasitol; 2001 May; 17(5):242-9. PubMed ID: 11323309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.
    Li F; Bounkeua V; Pettersen K; Vinetz JM
    Malar J; 2016 Feb; 15():111. PubMed ID: 26911483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmodium falciparum: new molecular targets with potential for antimalarial drug development.
    Gardiner DL; Skinner-Adams TS; Brown CL; Andrews KT; Stack CM; McCarthy JS; Dalton JP; Trenholme KR
    Expert Rev Anti Infect Ther; 2009 Nov; 7(9):1087-98. PubMed ID: 19883329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine.
    Banerjee R; Liu J; Beatty W; Pelosof L; Klemba M; Goldberg DE
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):990-5. PubMed ID: 11782538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The aspartic proteinase from the rodent parasite Plasmodium berghei as a potential model for plasmepsins from the human malaria parasite, Plasmodium falciparum.
    Humphreys MJ; Moon RP; Klinder A; Fowler SD; Rupp K; Bur D; Ridley RG; Berry C
    FEBS Lett; 1999 Dec; 463(1-2):43-8. PubMed ID: 10601635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspartic proteases of Plasmodium falciparum as the target of HIV-1 protease inhibitors.
    Savarino A; Cauda R; Cassone A
    J Infect Dis; 2005 Apr; 191(8):1381-2; author reply 1382-3. PubMed ID: 15776390
    [No Abstract]   [Full Text] [Related]  

  • 8. Hemoglobin Degrading Proteases of Plasmodium falciparum as Antimalarial Drug Targets.
    Qidwai T
    Curr Drug Targets; 2015; 16(10):1133-41. PubMed ID: 25738296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion.
    Nasamu AS; Glushakova S; Russo I; Vaupel B; Oksman A; Kim AS; Fremont DH; Tolia N; Beck JR; Meyers MJ; Niles JC; Zimmerberg J; Goldberg DE
    Science; 2017 Oct; 358(6362):518-522. PubMed ID: 29074774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of plasmepsins I and II aspartic proteases of the Plasmodium falciparum digestive vacuole.
    Luker KE; Francis SE; Gluzman IY; Goldberg DE
    Mol Biochem Parasitol; 1996 Jul; 79(1):71-8. PubMed ID: 8844673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cell cycle of parasitic protozoa: potential for chemotherapeutic exploitation.
    Hammarton TC; Mottram JC; Doerig C
    Prog Cell Cycle Res; 2003; 5():91-101. PubMed ID: 14593704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidrug resistance and ABC transporters in parasitic protozoa.
    Ouellette M; Légaré D; Papadopoulou B
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):201-6. PubMed ID: 11321574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting Structural Dynamics To Design Open-Flap Inhibitors of Malarial Aspartic Proteases.
    Bobrovs R; Jaudzems K; Jirgensons A
    J Med Chem; 2019 Oct; 62(20):8931-8950. PubMed ID: 31062983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of plasmepsin V, a membrane-bound aspartic protease homolog in the endoplasmic reticulum of Plasmodium falciparum.
    Klemba M; Goldberg DE
    Mol Biochem Parasitol; 2005 Oct; 143(2):183-91. PubMed ID: 16024107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New mechanisms of drug resistance in parasitic protozoa.
    Borst P; Ouellette M
    Annu Rev Microbiol; 1995; 49():427-60. PubMed ID: 8561467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA topoisomerases as targets for antiprotozoal therapy.
    Bakshi RP; Shapiro TA
    Mini Rev Med Chem; 2003 Sep; 3(6):597-608. PubMed ID: 12871162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartic proteases of Plasmodium vivax are highly conserved in wild isolates.
    Na BK; Lee EG; Lee HW; Cho SH; Bae YA; Kong Y; Lee JK; Kim TS
    Korean J Parasitol; 2004 Jun; 42(2):61-6. PubMed ID: 15181345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naturally-occurring and recombinant forms of the aspartic proteinases plasmepsins I and II from the human malaria parasite Plasmodium falciparum.
    Tyas L; Gluzman I; Moon RP; Rupp K; Westling J; Ridley RG; Kay J; Goldberg DE; Berry C
    FEBS Lett; 1999 Jul; 454(3):210-4. PubMed ID: 10431809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting functional residues in Plasmodium falciparum plasmepsins by combining sequence and structural analysis with molecular dynamics simulations.
    Valiente PA; Batista PR; Pupo A; Pons T; Valencia A; Pascutti PG
    Proteins; 2008 Nov; 73(2):440-57. PubMed ID: 18442137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on plasmepsins I and II from the malarial parasite Plasmodium falciparum and their exploitation as drug targets.
    Moon RP; Bur D; Loetscher H; D'Arcy A; Tyas L; Oefner C; Grueninger-Leitch F; Mona D; Rupp K; Dorn A; Matile H; Certa U; Berry C; Kay J; Ridley RG
    Adv Exp Med Biol; 1998; 436():397-406. PubMed ID: 9561248
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.