BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 11872466)

  • 1. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences.
    Rocap G; Distel DL; Waterbury JB; Chisholm SW
    Appl Environ Microbiol; 2002 Mar; 68(3):1180-91. PubMed ID: 11872466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis.
    Ernst A; Becker S; Wollenzien UI; Postius C
    Microbiology (Reading); 2003 Jan; 149(Pt 1):217-28. PubMed ID: 12576595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel lineages of Prochlorococcus and Synechococcus in the global oceans.
    Huang S; Wilhelm SW; Harvey HR; Taylor K; Jiao N; Chen F
    ISME J; 2012 Feb; 6(2):285-97. PubMed ID: 21955990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies.
    Ahlgren NA; Rocap G
    Appl Environ Microbiol; 2006 Nov; 72(11):7193-204. PubMed ID: 16936060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S-23S rRNA internal transcribed spacer sequences.
    Chen F; Wang K; Kan J; Suzuki MT; Wommack KE
    Appl Environ Microbiol; 2006 Mar; 72(3):2239-43. PubMed ID: 16517680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Diversity and Cooccurrence Patterns of Marine Cyanopodoviruses and Picocyanobacteria.
    Sun Y; Zhang S; Long L; Dong J; Chen F; Huang S
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyanobacterial ecotypes in different optical microenvironments of a 68 degrees C hot spring mat community revealed by 16S-23S rRNA internal transcribed spacer region variation.
    Ferris MJ; Kühl M; Wieland A; Ward DM
    Appl Environ Microbiol; 2003 May; 69(5):2893-8. PubMed ID: 12732563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies.
    Ahlgren NA; Rocap G; Chisholm SW
    Environ Microbiol; 2006 Mar; 8(3):441-54. PubMed ID: 16478451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria).
    Urbach E; Scanlan DJ; Distel DL; Waterbury JB; Chisholm SW
    J Mol Evol; 1998 Feb; 46(2):188-201. PubMed ID: 9452521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria.
    Boyer SL; Flechtner VR; Johansen JR
    Mol Biol Evol; 2001 Jun; 18(6):1057-69. PubMed ID: 11371594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-year dynamics of fine-scale marine cyanobacterial populations are more strongly explained by phage interactions than abiotic, bottom-up factors.
    Ahlgren NA; Perelman JN; Yeh YC; Fuhrman JA
    Environ Microbiol; 2019 Aug; 21(8):2948-2963. PubMed ID: 31106939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea.
    Choi DH; Noh JH
    FEMS Microbiol Ecol; 2009 Sep; 69(3):439-48. PubMed ID: 19624741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of molecular resolution on sequence-based discovery of ecological diversity among Synechococcus populations in an alkaline siliceous hot spring microbial mat.
    Melendrez MC; Lange RK; Cohan FM; Ward DM
    Appl Environ Microbiol; 2011 Feb; 77(4):1359-67. PubMed ID: 21169433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of pyrosequencing method for investigating the diversity of synechococcus subcluster 5.1 in open ocean.
    Choi DH; Noh JH; Lee JH
    Microbes Environ; 2014; 29(1):17-22. PubMed ID: 24389411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content.
    Robertson BR; Tezuka N; Watanabe MM
    Int J Syst Evol Microbiol; 2001 May; 51(Pt 3):861-871. PubMed ID: 11411708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea.
    Fuller NJ; Marie D; Partensky F; Vaulot D; Post AF; Scanlan DJ
    Appl Environ Microbiol; 2003 May; 69(5):2430-43. PubMed ID: 12732508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria).
    Acinas SG; Haverkamp TH; Huisman J; Stal LJ
    ISME J; 2009 Jan; 3(1):31-46. PubMed ID: 18769459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts.
    Erwin PM; Thacker RW
    Mol Ecol; 2008 Jun; 17(12):2937-47. PubMed ID: 18489545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity.
    Ting CS; Rocap G; King J; Chisholm SW
    Microbiology (Reading); 2001 Nov; 147(Pt 11):3171-82. PubMed ID: 11700369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. East Tibetan lakes harbour novel clusters of picocyanobacteria as inferred from the 16S-23S rRNA internal transcribed spacer sequences.
    Wu QL; Xing P; Liu WT
    Microb Ecol; 2010 Apr; 59(3):614-22. PubMed ID: 19904569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.