These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 11872490)
1. Hindgut fermentation in three species of marine herbivorous fish. Mountfort DO; Campbell J; Clements KD Appl Environ Microbiol; 2002 Mar; 68(3):1374-80. PubMed ID: 11872490 [TBL] [Abstract][Full Text] [Related]
2. Gut carbohydrases from the New Zealand marine herbivorous fishes Kyphosus sydneyanus (Kyphosidae), Aplodactylus arctidens (Aplodactylidae) and Odax pullus (Labridae). Skea GL; Mountfort DO; Clements KD Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):259-69. PubMed ID: 15649773 [TBL] [Abstract][Full Text] [Related]
3. Distinct microbiota composition and fermentation products indicate functional compartmentalization in the hindgut of a marine herbivorous fish. Pardesi B; Roberton AM; Lee KC; Angert ER; Rosendale DI; Boycheva S; White WL; Clements KD Mol Ecol; 2022 Apr; 31(8):2494-2509. PubMed ID: 35152505 [TBL] [Abstract][Full Text] [Related]
4. Host individual and gut location are more important in gut microbiota community composition than temporal variation in the marine herbivorous fish Kyphosus sydneyanus. Pisaniello A; Handley KM; White WL; Angert ER; Boey JS; Clements KD BMC Microbiol; 2023 Sep; 23(1):275. PubMed ID: 37773099 [TBL] [Abstract][Full Text] [Related]
5. Histology and ultrastructure of the gastrointestinal tract in four temperate marine herbivorous fishes. Johnson KS; Clements KD J Morphol; 2022 Jan; 283(1):16-34. PubMed ID: 34719807 [TBL] [Abstract][Full Text] [Related]
6. Substrate degradation pathways, conserved functions and community composition of the hindgut microbiota in the herbivorous marine fish Kyphosus sydneyanus. Stevenson SJR; Lee KC; Handley KM; Angert ER; White WL; Clements KD Comp Biochem Physiol A Mol Integr Physiol; 2022 Oct; 272():111283. PubMed ID: 35907589 [TBL] [Abstract][Full Text] [Related]
7. Contrasting digestive strategies in four New Zealand herbivorous fishes as reflected by carbohydrase activity profiles. Skea GL; Mountfort DO; Clements KD Comp Biochem Physiol A Mol Integr Physiol; 2007 Jan; 146(1):63-70. PubMed ID: 17046302 [TBL] [Abstract][Full Text] [Related]
8. Ontogenetic development of the gastrointestinal microbiota in the marine herbivorous fish Kyphosus sydneyanus. Moran D; Turner SJ; Clements KD Microb Ecol; 2005 May; 49(4):590-7. PubMed ID: 16041474 [TBL] [Abstract][Full Text] [Related]
9. Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Tholen A; Brune A Environ Microbiol; 2000 Aug; 2(4):436-49. PubMed ID: 11234932 [TBL] [Abstract][Full Text] [Related]
10. More than one way to be an herbivore: convergent evolution of herbivory using different digestive strategies in prickleback fishes (Stichaeidae). German DP; Sung A; Jhaveri P; Agnihotri R Zoology (Jena); 2015 Jun; 118(3):161-70. PubMed ID: 25769813 [TBL] [Abstract][Full Text] [Related]
13. Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Rechkemmer G; Rönnau K; von Engelhardt W Comp Biochem Physiol A Comp Physiol; 1988; 90(4):563-8. PubMed ID: 2902962 [TBL] [Abstract][Full Text] [Related]
14. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Stevens CE; Hume ID Physiol Rev; 1998 Apr; 78(2):393-427. PubMed ID: 9562034 [TBL] [Abstract][Full Text] [Related]
15. Why can't young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish. Day RD; German DP; Tibbetts IR Comp Biochem Physiol B Biochem Mol Biol; 2011 Jan; 158(1):23-9. PubMed ID: 20884371 [TBL] [Abstract][Full Text] [Related]
16. Hindgut fermentation in the wombats: two marsupial grazers. Barboza PS; Hume ID J Comp Physiol B; 1992; 162(6):561-6. PubMed ID: 1430424 [TBL] [Abstract][Full Text] [Related]
17. The Microbiome of the Gastrointestinal Tract of a Range-Shifting Marine Herbivorous Fish. Jones J; DiBattista JD; Stat M; Bunce M; Boyce MC; Fairclough DV; Travers MJ; Huggett MJ Front Microbiol; 2018; 9():2000. PubMed ID: 30210475 [TBL] [Abstract][Full Text] [Related]
18. Production, Absorption, and Blood Flow Dynamics of Short-Chain Fatty Acids Produced by Fermentation in Piglet Hindgut during the Suckling⁻Weaning Period. Nakatani M; Inoue R; Tomonaga S; Fukuta K; Tsukahara T Nutrients; 2018 Sep; 10(9):. PubMed ID: 30177641 [TBL] [Abstract][Full Text] [Related]
19. Temperature-related variation in growth rate, size, maturation and life span in a marine herbivorous fish over a latitudinal gradient. Trip ED; Clements KD; Raubenheimer D; Choat JH J Anim Ecol; 2014 Jul; 83(4):866-75. PubMed ID: 24252150 [TBL] [Abstract][Full Text] [Related]
20. The application of 13C-labelled short chain fatty acids to measure acetate and propionate production rates in the large intestines. Studies in a pig model. Breves G; Schulze E; Sallmann HP; Gädeken D Z Gastroenterol; 1993 Mar; 31(3):179-82. PubMed ID: 8386412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]