These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 11872492)
1. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Ito T; Okabe S; Satoh H; Watanabe Y Appl Environ Microbiol; 2002 Mar; 68(3):1392-402. PubMed ID: 11872492 [TBL] [Abstract][Full Text] [Related]
2. Successional development of sulfate-reducing bacterial populations and their activities in an activated sludge immobilized agar gel film. Okabe S; Santegoeds CM; Watanabe Y; de Beer D Biotechnol Bioeng; 2002 Apr; 78(2):119-30. PubMed ID: 11870602 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Ito T; Nielsen JL; Okabe S; Watanabe Y; Nielsen PH Appl Environ Microbiol; 2002 Jan; 68(1):356-64. PubMed ID: 11772645 [TBL] [Abstract][Full Text] [Related]
4. Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions. Okabe S; Ito T; Satoh H Appl Microbiol Biotechnol; 2003 Dec; 63(3):322-34. PubMed ID: 12879306 [TBL] [Abstract][Full Text] [Related]
5. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Okabe S; Itoh T; Satoh H; Watanabe Y Appl Environ Microbiol; 1999 Nov; 65(11):5107-16. PubMed ID: 10543829 [TBL] [Abstract][Full Text] [Related]
6. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Satoh H; Odagiri M; Ito T; Okabe S Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714 [TBL] [Abstract][Full Text] [Related]
7. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925 [TBL] [Abstract][Full Text] [Related]
8. Isolation, characterization, and in situ detection of a novel chemolithoautotrophic sulfur-oxidizing bacterium in wastewater biofilms growing under microaerophilic conditions. Ito T; Sugita K; Okabe S Appl Environ Microbiol; 2004 May; 70(5):3122-9. PubMed ID: 15128575 [TBL] [Abstract][Full Text] [Related]
9. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Ravenschlag K; Sahm K; Knoblauch C; Jørgensen BB; Amann R Appl Environ Microbiol; 2000 Aug; 66(8):3592-602. PubMed ID: 10919825 [TBL] [Abstract][Full Text] [Related]
11. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Mussmann M; Ishii K; Rabus R; Amann R Environ Microbiol; 2005 Mar; 7(3):405-18. PubMed ID: 15683401 [TBL] [Abstract][Full Text] [Related]
12. [Sulfate-Reducing Bacterial Communities in the Water Column of the Gdansk Deep (Baltic Sea)]. Korneeva VA; Pimenov NV; Krek AV; Tourova TP; Bryukhanov AL Mikrobiologiia; 2015; 84(2):250-60. PubMed ID: 26263632 [TBL] [Abstract][Full Text] [Related]
13. Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea. Matsui GY; Ringelberg DB; Lovell CR Appl Environ Microbiol; 2004 Dec; 70(12):7053-65. PubMed ID: 15574900 [TBL] [Abstract][Full Text] [Related]
14. Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms. Okabe S; Ito T; Sugita K; Satoh H Appl Environ Microbiol; 2005 May; 71(5):2520-9. PubMed ID: 15870342 [TBL] [Abstract][Full Text] [Related]
15. Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions. Kjellerup BV; Kjeldsen KU; Lopes F; Abildgaard L; Ingvorsen K; Frølund B; Sowers KR; Nielsen PH Biofouling; 2009 Nov; 25(8):727-37. PubMed ID: 20183131 [TBL] [Abstract][Full Text] [Related]
16. Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Wieringa EB; Overmann J; Cypionka H Environ Microbiol; 2000 Aug; 2(4):417-27. PubMed ID: 11234930 [TBL] [Abstract][Full Text] [Related]
17. Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques. Liu H; Tan S; Sheng Z; Liu Y; Yu T Biotechnol Bioeng; 2014 Nov; 111(11):2155-62. PubMed ID: 24890472 [TBL] [Abstract][Full Text] [Related]
18. Molecular analysis of the spatio-temporal distribution of sulfate-reducing bacteria (SRB) in Camargue (France) hypersaline microbial mat. Fourçans A; Ranchou-Peyruse A; Caumette P; Duran R Microb Ecol; 2008 Jul; 56(1):90-100. PubMed ID: 17952491 [TBL] [Abstract][Full Text] [Related]
19. dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants. Biswas K; Taylor MW; Turner SJ Appl Microbiol Biotechnol; 2014 Aug; 98(16):7211-22. PubMed ID: 24788329 [TBL] [Abstract][Full Text] [Related]