These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Wojtaszewski JF; Jørgensen SB; Hellsten Y; Hardie DG; Richter EA Diabetes; 2002 Feb; 51(2):284-92. PubMed ID: 11812734 [TBL] [Abstract][Full Text] [Related]
5. Muscle-specific overexpression of wild type and R225Q mutant AMP-activated protein kinase gamma3-subunit differentially regulates glycogen accumulation. Yu H; Hirshman MF; Fujii N; Pomerleau JM; Peter LE; Goodyear LJ Am J Physiol Endocrinol Metab; 2006 Sep; 291(3):E557-65. PubMed ID: 16638825 [TBL] [Abstract][Full Text] [Related]
6. Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. Kaushik VK; Young ME; Dean DJ; Kurowski TG; Saha AK; Ruderman NB Am J Physiol Endocrinol Metab; 2001 Aug; 281(2):E335-40. PubMed ID: 11440910 [TBL] [Abstract][Full Text] [Related]
7. α2 isoform-specific activation of 5'adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle. Nakano M; Hamada T; Hayashi T; Yonemitsu S; Miyamoto L; Toyoda T; Tanaka S; Masuzaki H; Ebihara K; Ogawa Y; Hosoda K; Inoue G; Yoshimasa Y; Otaka A; Fushiki T; Nakao K Metabolism; 2006 Mar; 55(3):300-8. PubMed ID: 16483872 [TBL] [Abstract][Full Text] [Related]
8. AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle. Stoppani J; Hildebrandt AL; Sakamoto K; Cameron-Smith D; Goodyear LJ; Neufer PD Am J Physiol Endocrinol Metab; 2002 Dec; 283(6):E1239-48. PubMed ID: 12388122 [TBL] [Abstract][Full Text] [Related]
9. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. Jørgensen SB; Viollet B; Andreelli F; Frøsig C; Birk JB; Schjerling P; Vaulont S; Richter EA; Wojtaszewski JF J Biol Chem; 2004 Jan; 279(2):1070-9. PubMed ID: 14573616 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of insulin-stimulated glycogen synthesis by 5-aminoimidasole-4-carboxamide-1-beta-d-ribofuranoside-induced adenosine 5'-monophosphate-activated protein kinase activation: interactions with Akt, glycogen synthase kinase 3-3alpha/beta, and glycogen synthase in isolated rat soleus muscle. Fediuc S; Gaidhu MP; Ceddia RB Endocrinology; 2006 Nov; 147(11):5170-7. PubMed ID: 16873531 [TBL] [Abstract][Full Text] [Related]
11. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Bergeron R; Russell RR; Young LH; Ren JM; Marcucci M; Lee A; Shulman GI Am J Physiol; 1999 May; 276(5):E938-44. PubMed ID: 10329989 [TBL] [Abstract][Full Text] [Related]
12. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Merrill GF; Kurth EJ; Hardie DG; Winder WW Am J Physiol; 1997 Dec; 273(6):E1107-12. PubMed ID: 9435525 [TBL] [Abstract][Full Text] [Related]
13. AMP-activated protein kinase activation by AICAR increases both muscle fatty acid and glucose uptake in white muscle of insulin-resistant rats in vivo. Iglesias MA; Furler SM; Cooney GJ; Kraegen EW; Ye JM Diabetes; 2004 Jul; 53(7):1649-54. PubMed ID: 15220186 [TBL] [Abstract][Full Text] [Related]
14. Impact of in vivo fatty acid oxidation blockade on glucose turnover and muscle glucose metabolism during low-dose AICAR infusion. Christopher M; Rantzau C; Chen ZP; Snow R; Kemp B; Alford FP Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E1131-40. PubMed ID: 16772328 [TBL] [Abstract][Full Text] [Related]
15. Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR--an activator of AMP-activated protein kinase. Young ME; Radda GK; Leighton B FEBS Lett; 1996 Mar; 382(1-2):43-7. PubMed ID: 8612761 [TBL] [Abstract][Full Text] [Related]
16. Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated. Winder WW; Holmes BF J Appl Physiol (1985); 2000 Dec; 89(6):2430-7. PubMed ID: 11090599 [TBL] [Abstract][Full Text] [Related]
17. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. Raney MA; Yee AJ; Todd MK; Turcotte LP Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E592-8. PubMed ID: 15547141 [TBL] [Abstract][Full Text] [Related]
18. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle. Ai H; Ihlemann J; Hellsten Y; Lauritzen HP; Hardie DG; Galbo H; Ploug T Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1291-300. PubMed ID: 12006359 [TBL] [Abstract][Full Text] [Related]
19. AMP-activated protein kinase and muscle glucose uptake. Musi N; Goodyear LJ Acta Physiol Scand; 2003 Aug; 178(4):337-45. PubMed ID: 12864738 [TBL] [Abstract][Full Text] [Related]
20. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Sakamoto K; Göransson O; Hardie DG; Alessi DR Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E310-7. PubMed ID: 15068958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]