BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11872663)

  • 1. Dipeptidyl peptidase IV-resistant [D-Ala(2)]glucose-dependent insulinotropic polypeptide (GIP) improves glucose tolerance in normal and obese diabetic rats.
    Hinke SA; Gelling RW; Pederson RA; Manhart S; Nian C; Demuth HU; McIntosh CH
    Diabetes; 2002 Mar; 51(3):652-61. PubMed ID: 11872663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats.
    Lynn FC; Pamir N; Ng EH; McIntosh CH; Kieffer TJ; Pederson RA
    Diabetes; 2001 May; 50(5):1004-11. PubMed ID: 11334402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Ser2]- and [SerP2] incretin analogs: comparison of dipeptidyl peptidase IV resistance and biological activities in vitro and in vivo.
    Hinke SA; Manhart S; Kühn-Wache K; Nian C; Demuth HU; Pederson RA; McIntosh CH
    J Biol Chem; 2004 Feb; 279(6):3998-4006. PubMed ID: 14610075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a bioactive domain in the amino-terminus of glucose-dependent insulinotropic polypeptide (GIP).
    Hinke SA; Manhart S; Pamir N; Demuth H; W Gelling R; Pederson RA; McIntosh CH
    Biochim Biophys Acta; 2001 May; 1547(1):143-55. PubMed ID: 11343800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced cAMP generation and insulin-releasing potency of two novel Tyr1-modified enzyme-resistant forms of glucose-dependent insulinotropic polypeptide is associated with significant antihyperglycaemic activity in spontaneous obesity-diabetes.
    Gault VA; Flatt PR; Bailey CJ; Harriott P; Greer B; Mooney MH; O'harte FP
    Biochem J; 2002 Nov; 367(Pt 3):913-20. PubMed ID: 12150711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GIP-(3-42) does not antagonize insulinotropic effects of GIP at physiological concentrations.
    Deacon CF; Plamboeck A; Rosenkilde MM; de Heer J; Holst JJ
    Am J Physiol Endocrinol Metab; 2006 Sep; 291(3):E468-75. PubMed ID: 16608883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonistic effects of two novel GIP analogs, (Hyp3)GIP and (Hyp3)GIPLys16PAL, on the biological actions of GIP and longer-term effects in diabetic ob/ob mice.
    O'Harte FP; Hunter K; Gault VA; Irwin N; Green BD; Greer B; Harriott P; Bailey CJ; Flatt PR
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1674-82. PubMed ID: 17299087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel long-acting glucose-dependent insulinotropic peptide analogue: enhanced efficacy in normal and diabetic rodents.
    Tatarkiewicz K; Hargrove DM; Jodka CM; Gedulin BR; Smith PA; Hoyt JA; Lwin A; Collins L; Mamedova L; Levy OE; D'Souza L; Janssen S; Srivastava V; Ghosh SS; Parkes DG
    Diabetes Obes Metab; 2014 Jan; 16(1):75-85. PubMed ID: 23859463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation, cyclic adenosine monophosphate production, insulin secretion, and glycemic effects of two novel N-terminal Ala2-substituted analogs of glucose-dependent insulinotropic polypeptide with preserved biological activity in vivo.
    Gault VA; O'Harte FP; Harriott P; Flatt PR
    Metabolism; 2003 Jun; 52(6):679-87. PubMed ID: 12800091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GIP(Lys16PAL) and GIP(Lys37PAL): novel long-acting acylated analogues of glucose-dependent insulinotropic polypeptide with improved antidiabetic potential.
    Irwin N; O'Harte FP; Gault VA; Green BD; Greer B; Harriott P; Bailey CJ; Flatt PR
    J Med Chem; 2006 Feb; 49(3):1047-54. PubMed ID: 16451070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the cellular and biological properties of DPP-IV-resistant N-glucitol analogues of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide.
    Green BD; Gault VA; O'Harte FP; Flatt PR
    Diabetes Obes Metab; 2005 Sep; 7(5):595-604. PubMed ID: 16050953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor-Mediated Bioassay Reflects Dynamic Change of Glucose-Dependent Insulinotropic Polypeptide by Dipeptidyl Peptidase 4 Inhibitor Treatment in Subjects With Type 2 Diabetes.
    Yanagimachi T; Fujita Y; Takeda Y; Honjo J; Yokoyama H; Haneda M
    Front Endocrinol (Lausanne); 2020; 11():214. PubMed ID: 32390941
    [No Abstract]   [Full Text] [Related]  

  • 13. Long-term treatment with dipeptidyl peptidase IV inhibitor improves hepatic and peripheral insulin sensitivity in the VDF Zucker rat: a euglycemic-hyperinsulinemic clamp study.
    Pospisilik JA; Stafford SG; Demuth HU; McIntosh CH; Pederson RA
    Diabetes; 2002 Sep; 51(9):2677-83. PubMed ID: 12196458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the cellular and metabolic effects of a novel enzyme-resistant antagonist of glucose-dependent insulinotropic polypeptide.
    Gault VA; O'Harte FP; Harriott P; Flatt PR
    Biochem Biophys Res Commun; 2002 Feb; 290(5):1420-6. PubMed ID: 11820780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats.
    Pospisilik JA; Martin J; Doty T; Ehses JA; Pamir N; Lynn FC; Piteau S; Demuth HU; McIntosh CH; Pederson RA
    Diabetes; 2003 Mar; 52(3):741-50. PubMed ID: 12606516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative effects of GLP-1 and GIP on cAMP production, insulin secretion, and in vivo antidiabetic actions following substitution of Ala8/Ala2 with 2-aminobutyric acid.
    Green BD; Gault VA; Flatt PR; Harriott P; Greer B; O'Harte FP
    Arch Biochem Biophys; 2004 Aug; 428(2):136-43. PubMed ID: 15246869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats.
    Pospisilik JA; Stafford SG; Demuth HU; Brownsey R; Parkhouse W; Finegood DT; McIntosh CH; Pederson RA
    Diabetes; 2002 Apr; 51(4):943-50. PubMed ID: 11916911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A GIP receptor agonist exhibits beta-cell anti-apoptotic actions in rat models of diabetes resulting in improved beta-cell function and glycemic control.
    Widenmaier SB; Kim SJ; Yang GK; De Los Reyes T; Nian C; Asadi A; Seino Y; Kieffer TJ; Kwok YN; McIntosh CH
    PLoS One; 2010 Mar; 5(3):e9590. PubMed ID: 20231880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats.
    Sudre B; Broqua P; White RB; Ashworth D; Evans DM; Haigh R; Junien JL; Aubert ML
    Diabetes; 2002 May; 51(5):1461-9. PubMed ID: 11978643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pancreatic glucose-dependent insulinotropic polypeptide (GIP) (1-30) expression is upregulated in diabetes and PEGylated GIP(1-30) can suppress the progression of low-dose-STZ-induced hyperglycaemia in mice.
    Yanagimachi T; Fujita Y; Takeda Y; Honjo J; Atageldiyeva KK; Takiyama Y; Abiko A; Makino Y; Kieffer TJ; Haneda M
    Diabetologia; 2016 Mar; 59(3):533-41. PubMed ID: 26693710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.