These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11873876)

  • 1. An engineering assessment of the burning of the combustible fraction of construction and demolition wastes in a redundant brick kiln.
    Chang NB; Lin KS; Sun YP; Wang HP
    Environ Technol; 2001 Dec; 22(12):1405-18. PubMed ID: 11873876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation kinetics of the combustible fraction of construction and demolition wastes.
    Chang NB; Lin KS; Sun YP; Wang HP
    J Environ Qual; 2001; 30(4):1392-401. PubMed ID: 11476518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction demolition wastes, Waelz slag and MSWI bottom ash: a comparative technical analysis as material for road construction.
    Vegas I; Ibañez JA; San José JT; Urzelai A
    Waste Manag; 2008; 28(3):565-74. PubMed ID: 17451930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systems analysis tool for construction and demolition wastes management.
    Wang JY; Touran A; Christoforou C; Fadlalla H
    Waste Manag; 2004; 24(10):989-97. PubMed ID: 15567664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling.
    Hwang IH; Matsuto T; Tanaka N; Sasaki Y; Tanaami K
    Waste Manag; 2007; 27(9):1155-66. PubMed ID: 16920347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.
    Mulder E; de Jong TP; Feenstra L
    Waste Manag; 2007; 27(10):1408-15. PubMed ID: 17532617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Choosing a sustainable demolition waste management strategy using multicriteria decision analysis.
    Roussat N; Dujet C; Méhu J
    Waste Manag; 2009 Jan; 29(1):12-20. PubMed ID: 18572397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indicators to assess the recovery of natural resources contained in demolition waste.
    Roussat N; Méhu J; Dujet C
    Waste Manag Res; 2009 Mar; 27(2):159-66. PubMed ID: 19244415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Framework for estimating potential wastes and secondary resources accumulated within an economy--a case study of construction minerals in Japan.
    Hashimoto S; Tanikawa H; Moriguchi Y
    Waste Manag; 2009 Nov; 29(11):2859-66. PubMed ID: 19608398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental performance of construction waste: Comparing three scenarios from a case study in Catalonia, Spain.
    Ortiz O; Pasqualino JC; Castells F
    Waste Manag; 2010 Apr; 30(4):646-54. PubMed ID: 20005694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A web-based Decision Support System for the optimal management of construction and demolition waste.
    Banias G; Achillas Ch; Vlachokostas Ch; Moussiopoulos N; Papaioannou I
    Waste Manag; 2011 Dec; 31(12):2497-502. PubMed ID: 21835602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Kärki J
    Waste Manag; 2014 Nov; 34(11):2163-70. PubMed ID: 25074716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of construction waste generation and management in Thailand.
    Kofoworola OF; Gheewala SH
    Waste Manag; 2009 Feb; 29(2):731-8. PubMed ID: 18774703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geopolymerisation of silt generated from construction and demolition waste washing plants.
    Lampris C; Lupo R; Cheeseman CR
    Waste Manag; 2009 Jan; 29(1):368-73. PubMed ID: 18579370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues.
    Grosso M; Dellavedova S; Rigamonti L; Scotti S
    Waste Manag; 2016 Jan; 47(Pt B):267-75. PubMed ID: 26601731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and mechanical properties of cement-based products containing incineration bottom ash.
    Filipponi P; Polettini A; Pomi R; Sirini P
    Waste Manag; 2003; 23(2):145-56. PubMed ID: 12623089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Evaluation of Pavement Geomaterials Stabilized with Pond Ash and Brick Kiln Dust Using Advanced Cyclic Triaxial Testing.
    Gupta G; Sood H; Gupta P
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Converting moving-grate incineration from combustion to gasification - numerical simulation of the burning characteristics.
    Yang YB; Sharifi VN; Swithenbank J
    Waste Manag; 2007; 27(5):645-55. PubMed ID: 16730435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating construction and demolition debris generation using a materials flow analysis approach.
    Cochran KM; Townsend TG
    Waste Manag; 2010 Nov; 30(11):2247-54. PubMed ID: 20472418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.