BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11874136)

  • 1. Parallel cascade recognition of exon and intron DNA sequences.
    Korenberg MJ; Lipson ED; Green JR; Solomon JE
    Ann Biomed Eng; 2002 Jan; 30(1):129-40. PubMed ID: 11874136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated entropy-based approach for analyzing exons and introns in DNA sequences.
    Li J; Zhang L; Li H; Ping Y; Xu Q; Wang R; Tan R; Wang Z; Liu B; Wang Y
    BMC Bioinformatics; 2019 Jun; 20(Suppl 8):283. PubMed ID: 31182012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames.
    Solovyev VV; Salamov AA; Lawrence CB
    Nucleic Acids Res; 1994 Dec; 22(24):5156-63. PubMed ID: 7816600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic classification of protein sequences into structure/function groups via parallel cascade identification: a feasibility study.
    Korenberg MJ; David R; Hunter IW; Solomon JE
    Ann Biomed Eng; 2000 Jul; 28(7):803-11. PubMed ID: 11016417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene structure prediction using an orthologous gene of known exon-intron structure.
    Seneff S; Wang C; Burge CB
    Appl Bioinformatics; 2004; 3(2-3):81-90. PubMed ID: 15693733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in the Exon-Intron Database (EID).
    Shepelev V; Fedorov A
    Brief Bioinform; 2006 Jun; 7(2):178-85. PubMed ID: 16772261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of adenosine triphosphate binding sites using parallel cascade system identification.
    Green JR; Korenberg MJ; David R; Hunter IW
    Ann Biomed Eng; 2003 Apr; 31(4):462-70. PubMed ID: 12723687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 5' leader of plant PgiC has an intron: the leader shows both the loss and maintenance of constraints compared with introns and exons in the coding region.
    Gottlieb LD; Ford VS
    Mol Biol Evol; 2002 Sep; 19(9):1613-23. PubMed ID: 12200488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Short Exons Disunited by a Short Intron in Eukaryotic DNA Regions.
    Sharma S; Sharma SN; Saxena R
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1660-1670. PubMed ID: 30794188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In search of the small ones: improved prediction of short exons in vertebrates, plants, fungi and protists.
    Saeys Y; Rouzé P; Van de Peer Y
    Bioinformatics; 2007 Feb; 23(4):414-20. PubMed ID: 17204465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of compositional constraints in nucleic acid sequences using neural networks.
    Granjeon E; Tarroux P
    Comput Appl Biosci; 1995 Feb; 11(1):29-37. PubMed ID: 7796272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scipio: using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species.
    Keller O; Odronitz F; Stanke M; Kollmar M; Waack S
    BMC Bioinformatics; 2008 Jun; 9():278. PubMed ID: 18554390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks.
    Snyder EE; Stormo GD
    Nucleic Acids Res; 1993 Feb; 21(3):607-13. PubMed ID: 8441672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exons and introns characterization in nucleic acid sequences by time-frequency analysis.
    Melia US; Claria F; Gallardo JJ; Caminal P; Perera A; Vallverdu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1783-6. PubMed ID: 21096421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prediction of human exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames.
    Solovyev VV; Salamov AA; Lawrence CB
    Proc Int Conf Intell Syst Mol Biol; 1994; 2():354-62. PubMed ID: 7584412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of human gene functional regions based on oligonucleotide composition.
    Solovyev VV; Lawrence CB
    Proc Int Conf Intell Syst Mol Biol; 1993; 1():371-9. PubMed ID: 7584359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exon-intron organization of the human gp130 gene.
    Szalai C; Toth S; Falus A
    Gene; 2000 Feb; 243(1-2):161-6. PubMed ID: 10675624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene prediction with a hidden Markov model and a new intron submodel.
    Stanke M; Waack S
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii215-25. PubMed ID: 14534192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting mid-range DNA patterns for sequence classification: binary abstraction Markov models.
    Shepard SS; McSweeny A; Serpen G; Fedorov A
    Nucleic Acids Res; 2012 Jun; 40(11):4765-73. PubMed ID: 22344692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional graphical representation of DNA sequences and intron-exon discrimination in intron-rich sequences.
    Nandy A
    Comput Appl Biosci; 1996 Feb; 12(1):55-62. PubMed ID: 8670620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.