BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

744 related articles for article (PubMed ID: 11874723)

  • 1. Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees.
    Aasamaa K; Sõber A; Hartung W; Niinemets U
    Tree Physiol; 2002 Mar; 22(4):267-76. PubMed ID: 11874723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abscisic acid in leaves and roots of willow: significance for stomatal conductance.
    Liu L; McDonald AJ; Stadenberg I; Davies WJ
    Tree Physiol; 2001 Jul; 21(11):759-64. PubMed ID: 11470662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal and leaf growth responses to partial drying of root tips in willow.
    Liu L; McDonald AJ; Stadenberg I; Davies WJ
    Tree Physiol; 2001 Jul; 21(11):765-70. PubMed ID: 11470663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in transpiration rate and leaf cell turgor maintenance in saplings of deciduous broad-leaved tree species common in cool temperate forests in Japan.
    Saito T; Tanaka T; Tanabe H; Matsumoto Y; Morikawa Y
    Tree Physiol; 2003 Jan; 23(1):59-66. PubMed ID: 12511305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canopy stomatal conductance and xylem sap abscisic acid (ABA) in mature Scots pine during a gradually imposed drought.
    Perks MP; Irvine J; Grace J
    Tree Physiol; 2002 Aug; 22(12):877-83. PubMed ID: 12184977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal courses of maximum hydraulic conductance in shoots of six temperate deciduous tree species.
    Aasamaa K; Sõber A
    Funct Plant Biol; 2006 Jan; 32(12):1077-1087. PubMed ID: 32689203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest.
    Kazda M; Salzer J; Reiter I
    Tree Physiol; 2000 Sep; 20(15):1029-37. PubMed ID: 11305457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.
    Sorrentino G; Haworth M; Wahbi S; Mahmood T; Zuomin S; Centritto M
    PLoS One; 2016; 11(2):e0148554. PubMed ID: 26862904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone.
    Urban O; Kosvancová M; Marek MV; Lichtenthaler HK
    Tree Physiol; 2007 Aug; 27(8):1207-15. PubMed ID: 17472946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced photosynthesis in old oak (Quercus robur): the impact of crown and hydraulic architecture.
    Rust S; Roloff A
    Tree Physiol; 2002 Jun; 22(8):597-601. PubMed ID: 12045032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size dependency of photosynthetic water- and nitrogen-use efficiency and hydraulic limitation in Acer mono.
    Nabeshima E; Hiura T
    Tree Physiol; 2004 Jul; 24(7):745-52. PubMed ID: 15123446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinated responses of plant hydraulic architecture with the reduction of stomatal conductance under elevated CO2 concentration.
    Hao GY; Holbrook NM; Zwieniecki MA; Gutschick VP; BassiriRad H
    Tree Physiol; 2018 Jul; 38(7):1041-1052. PubMed ID: 29401304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata.
    Mitchell PJ; McAdam SA; Pinkard EA; Brodribb TJ
    Tree Physiol; 2017 Feb; 37(2):236-245. PubMed ID: 28399262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stomatal conductance of Acer rubrum ecotypes under varying soil and atmospheric water conditions: predicting stomatal responses with an abscisic acid-based model.
    Bauerle WL; Toler JE; Wang GG
    Tree Physiol; 2004 Jul; 24(7):805-11. PubMed ID: 15123452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of leaf hydraulic conductance in the regulation of stomatal conductance in almond and olive in response to water stress.
    Hernandez-Santana V; Rodriguez-Dominguez CM; Fernández JE; Diaz-Espejo A
    Tree Physiol; 2016 Jun; 36(6):725-35. PubMed ID: 26846979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions.
    Torres-Ruiz JM; Diaz-Espejo A; Perez-Martin A; Hernandez-Santana V
    Tree Physiol; 2015 Apr; 35(4):415-24. PubMed ID: 25030936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance.
    Solari LI; DeJong TM
    J Exp Bot; 2006; 57(9):1981-9. PubMed ID: 16690626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of leaf, shoot and fruit development on photosynthesis of lychee trees (Litchi chinensis).
    Hieke S; Menzel CM; Lüdders P
    Tree Physiol; 2002 Sep; 22(13):955-61. PubMed ID: 12204852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecophysiology of Acer rubrum seedlings from contrasting hydrologic habitats: growth, gas exchange, tissue water relations, abscisic acid and carbon isotope discrimination.
    Bauerle WL; Whitlow TH; Setter TL; Bauerle TL; Vermeylen FM
    Tree Physiol; 2003 Aug; 23(12):841-50. PubMed ID: 12865250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation of Atriplex halimus L. leaves involves changes in the molecular regulation of stomatal conductance under high evaporative demand and high but not low soil water content.
    Nada RM; Khedr AHA; Serag MS; El-Qashlan NR; Abogadallah GM
    Planta; 2018 Oct; 248(4):795-812. PubMed ID: 29923138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.