These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11875563)

  • 1. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes.
    Lee J; Kim H; Kahng SJ; Kim G; Son YW; Ihm J; Kato H; Wang ZW; Okazaki T; Shinohara H; Kuk Y
    Nature; 2002 Feb; 415(6875):1005-8. PubMed ID: 11875563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Logic circuits with carbon nanotube transistors.
    Bachtold A; Hadley P; Nakanishi T; Dekker C
    Science; 2001 Nov; 294(5545):1317-20. PubMed ID: 11588220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A piggyback ride for transition metals: encapsulation of exohedral metallofullerenes in carbon nanotubes.
    Chamberlain TW; Champness NR; Schröder M; Khlobystov AN
    Chemistry; 2011 Jan; 17(2):668-74. PubMed ID: 21207588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotube electronics: large-scale assembly of carbon nanotubes.
    Rao SG; Huang L; Setyawan W; Hong S
    Nature; 2003 Sep; 425(6953):36-7. PubMed ID: 12955130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.
    Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E
    Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-based electronics.
    Avouris P; Chen Z; Perebeinos V
    Nat Nanotechnol; 2007 Oct; 2(10):605-15. PubMed ID: 18654384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra.
    O' Connell MJ; Eibergen EE; Doorn SK
    Nat Mater; 2005 May; 4(5):412-8. PubMed ID: 15821741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: electronic properties and quantum conductance.
    Meunier V; Sumpter BG
    J Chem Phys; 2005 Jul; 123(2):24705. PubMed ID: 16050764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrapping of exohedral metallofullerenes in carbon nanotubes: (CsC60)n@SWNT nano-peapods.
    Sun BY; Sato Y; Suenaga K; Okazaki T; Kishi N; Sugai T; Bandow S; Iijima S; Shinohara H
    J Am Chem Soc; 2005 Dec; 127(51):17972-3. PubMed ID: 16366526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon.
    Kuo YH; Lee YK; Ge Y; Ren S; Roth JE; Kamins TI; Miller DA; Harris JS
    Nature; 2005 Oct; 437(7063):1334-6. PubMed ID: 16251959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays.
    Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P
    ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular electronic devices based on single-walled carbon nanotube electrodes.
    Feldman AK; Steigerwald ML; Guo X; Nuckolls C
    Acc Chem Res; 2008 Dec; 41(12):1731-41. PubMed ID: 18798657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
    Jang JE; Cha SN; Choi YJ; Kang DJ; Butler TP; Hasko DG; Jung JE; Kim JM; Amaratunga GA
    Nat Nanotechnol; 2008 Jan; 3(1):26-30. PubMed ID: 18654446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates.
    Ishikawa FN; Chang HK; Ryu K; Chen PC; Badmaev A; Gomez De Arco L; Shen G; Zhou C
    ACS Nano; 2009 Jan; 3(1):73-9. PubMed ID: 19206251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orbital Kondo effect in carbon nanotubes.
    Jarillo-Herrero P; Kong J; van der Zant HS; Dekker C; Kouwenhoven LP; De Franceschi S
    Nature; 2005 Mar; 434(7032):484-8. PubMed ID: 15791250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates.
    Javey A; Kim H; Brink M; Wang Q; Ural A; Guo J; McIntyre P; McEuen P; Lundstrom M; Dai H
    Nat Mater; 2002 Dec; 1(4):241-6. PubMed ID: 12618786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.
    Tapasztó L; Dobrik G; Lambin P; Biró LP
    Nat Nanotechnol; 2008 Jul; 3(7):397-401. PubMed ID: 18654562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical properties and memory effects of field-effect transistors from networks of single- and double-walled carbon nanotubes.
    Di Bartolomeo A; Rinzan M; Boyd AK; Yang Y; Guadagno L; Giubileo F; Barbara P
    Nanotechnology; 2010 Mar; 21(11):115204. PubMed ID: 20173224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kondo physics in carbon nanotubes.
    Nygård J; Cobden DH; Lindelof PE
    Nature; 2000 Nov; 408(6810):342-6. PubMed ID: 11099037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.