BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11875671)

  • 21. Ifosfamide metabolite chloroacetaldehyde causes renal dysfunction in vivo.
    Springate JE
    J Appl Toxicol; 1997; 17(1):75-9. PubMed ID: 9048231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nephrotoxic Ifosfamide-metabolite chloroacetaldehyde interferes with renal extracellular matrix homeostasis.
    Benesic A; Schwerdt G; Hennemeier I; Sauvant C; Mildenberger S; Gekle M
    Cell Physiol Biochem; 2014; 33(4):1106-16. PubMed ID: 24732969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of ifosfamide to chloroacetaldehyde contributes to antitumor activity in vivo.
    Börner K; Kisro J; Brüggemann SK; Hagenah W; Peters SO; Wagner T
    Drug Metab Dispos; 2000 May; 28(5):573-6. PubMed ID: 10772637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ifosfamide-induced nephrotoxicity: mechanism and prevention.
    Nissim I; Horyn O; Daikhin Y; Nissim I; Luhovyy B; Phillips PC; Yudkoff M
    Cancer Res; 2006 Aug; 66(15):7824-31. PubMed ID: 16885387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative pharmacokinetics of ifosfamide, 4-hydroxyifosfamide, chloroacetaldehyde, and 2- and 3-dechloroethylifosfamide in patients on fractionated intravenous ifosfamide therapy.
    Kurowski V; Wagner T
    Cancer Chemother Pharmacol; 1993; 33(1):36-42. PubMed ID: 8269587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ifosfamide nephrotoxicity in children: a mechanistic base for pharmacological prevention.
    Hanly L; Chen N; Rieder M; Koren G
    Expert Opin Drug Saf; 2009 Mar; 8(2):155-68. PubMed ID: 19309244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ifosfamide metabolites CAA, 4-OH-Ifo and Ifo-mustard reduce apical phosphate transport by changing NaPi-IIa in OK cells.
    Patzer L; Hernando N; Ziegler U; Beck-Schimmer B; Biber J; Murer H
    Kidney Int; 2006 Nov; 70(10):1725-34. PubMed ID: 17003823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cadmium chloride inhibits lactate gluconeogenesis in isolated human renal proximal tubules: a cellular metabolomic approach with 13C-NMR.
    Faiz H; Conjard-Duplany A; Boghossian M; Martin G; Baverel G; Ferrier B
    Arch Toxicol; 2011 Sep; 85(9):1067-77. PubMed ID: 21153630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The metabolic fate of lactate in renal cortical tubules.
    Janssens P; Hems R; Ross B
    Biochem J; 1980 Jul; 190(1):27-37. PubMed ID: 7447933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ifosfamide toxicity in cultured proximal renal tubule cells.
    Springate J; Taub M
    Pediatr Nephrol; 2007 Mar; 22(3):358-65. PubMed ID: 17072651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cadmium chloride inhibits lactate gluconeogenesis in mouse renal proximal tubules: An in vitro metabolomic approach with (13)C NMR.
    Faiz H; Boghossian M; Martin G; Baverel G; Ferrier B; Conjard-Duplany A
    Toxicol Lett; 2015 Nov; 238(3):45-52. PubMed ID: 26235813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino-acid-dependent, differential effects of ethanol on glucose production in rabbit kidney-cortex tubules.
    Derlacz RA; Jagielski AK; Kiersztan A; Winiarska K; Drozak J; Poplawski P; Wegrzynowicz M; Chodnicka K; Bryla J
    Alcohol Alcohol; 2004; 39(2):93-100. PubMed ID: 14998823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition and stimulation of long-chain fatty acid oxidation by chloroacetaldehyde and methylene blue in rats.
    Visarius TM; Stucki JW; Lauterburg BH
    J Pharmacol Exp Ther; 1999 May; 289(2):820-4. PubMed ID: 10215658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: a 13C-NMR study.
    Renault S; Faiz H; Gadet R; Ferrier B; Martin G; Baverel G; Conjard-Duplany A
    Toxicol Appl Pharmacol; 2010 Jan; 242(1):9-17. PubMed ID: 19747499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2-Chloroacetaldehyde-induced cerebral glutathione depletion and neurotoxicity.
    Sood C; O'Brien PJ
    Br J Cancer Suppl; 1996 Jul; 27():S287-93. PubMed ID: 8763899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of acetaldehyde metabolism in isolated dog, rat and guinea-pig kidney tubules.
    Michoudet C; Baverel G
    Biochem Pharmacol; 1987 Nov; 36(22):3987-91. PubMed ID: 3689431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutagenicity of vinyl chloride and its reactive metabolites, chloroethylene oxide and chloroacetaldehyde, in a metabolically competent human B-lymphoblastoid line.
    Chiang SY; Swenberg JA; Weisman WH; Skopek TR
    Carcinogenesis; 1997 Jan; 18(1):31-6. PubMed ID: 9054586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of chloroacetaldehyde in 2-chloroethanol-induced cardiotoxicity.
    Chen YT; Hsu CI; Hung DZ; Matsuura I; Liao JW
    Food Chem Toxicol; 2011 May; 49(5):1063-7. PubMed ID: 21266185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AlkB influences the chloroacetaldehyde-induced mutation spectra and toxicity in the pSP189 supF shuttle vector.
    Kim MY; Zhou X; Delaney JC; Taghizadeh K; Dedon PC; Essigmann JM; Wogan GN
    Chem Res Toxicol; 2007 Aug; 20(8):1075-83. PubMed ID: 17658757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip.
    Choucha-Snouber L; Aninat C; Grsicom L; Madalinski G; Brochot C; Poleni PE; Razan F; Guillouzo CG; Legallais C; Corlu A; Leclerc E
    Biotechnol Bioeng; 2013 Feb; 110(2):597-608. PubMed ID: 22887128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.