These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11875828)

  • 1. [An introduction to predictive microbiology].
    Simidu U
    Shokuhin Eiseigaku Zasshi; 2001 Dec; 42(6):J317-23. PubMed ID: 11875828
    [No Abstract]   [Full Text] [Related]  

  • 2. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction to predictive modelling special issue. Preface.
    Koutsoumanis K; McMeekin T; Dalgaard P
    Int J Food Microbiol; 2008 Nov; 128(1):1. PubMed ID: 18835055
    [No Abstract]   [Full Text] [Related]  

  • 4. Current trends in predictive modelling of microbial lag phenomena.
    Swinnen IA; Bernaerts K; Dens EJ; Geeraerd AH; Van Impe JF
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):495-502. PubMed ID: 15954644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of predictive modelling techniques in industry: from food design up to risk assessment.
    Membré JM; Lambert RJ
    Int J Food Microbiol; 2008 Nov; 128(1):10-5. PubMed ID: 18701182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The future of predictive microbiology: strategic research, innovative applications and great expectations.
    McMeekin T; Bowman J; McQuestin O; Mellefont L; Ross T; Tamplin M
    Int J Food Microbiol; 2008 Nov; 128(1):2-9. PubMed ID: 18703250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food.
    Membré JM; Leporq B; Vialette M; Mettler E; Perrier L; Thuault D; Zwietering M
    Int J Food Microbiol; 2005 Apr; 100(1-3):179-86. PubMed ID: 15854703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food engineering and predictive microbiology: on the necessity to combine biological and physical kinetics.
    Mafart P
    Int J Food Microbiol; 2005 Apr; 100(1-3):239-51. PubMed ID: 15854709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and predicting non-isothermal microbial growth using general purpose software.
    Corradini MG; Amézquita A; Normand MD; Peleg M
    Int J Food Microbiol; 2006 Feb; 106(2):223-8. PubMed ID: 16226331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Predictive microbiology. Toward an operational tool to help our appraisal].
    Jolivet P
    Ann Pharm Fr; 2000 Dec; 58(6 Suppl):475-81. PubMed ID: 11148386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On modeling and simulating transitions between microbial growth and inactivation or vice versa.
    Corradini MG; Peleg M
    Int J Food Microbiol; 2006 Apr; 108(1):22-35. PubMed ID: 16403587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.
    Ferrer J; Prats C; López D; Vives-Rego J
    Int J Food Microbiol; 2009 Aug; 134(1-2):2-8. PubMed ID: 19217180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive modeling of microorganisms: LAG and LIP in monotonic growth.
    Vadasz P; Vadasz AS
    Int J Food Microbiol; 2005 Jul; 102(3):257-75. PubMed ID: 16014294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The "Sym'Previus" software, a tool to support decisions to the foodstuff safety.
    Leporq B; Membré JM; Dervin C; Buche P; Guyonnet JP
    Int J Food Microbiol; 2005 Apr; 100(1-3):231-7. PubMed ID: 15854708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive software for estimating the efficacy of non-isothermal heat preservation processes.
    Peleg M; Normand MD; Corradini MG
    Int J Food Microbiol; 2008 Aug; 126(1-2):250-7. PubMed ID: 18571264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell division theory and individual-based modeling of microbial lag: part I. The theory of cell division.
    Dens EJ; Bernaerts K; Standaert AR; Van Impe JF
    Int J Food Microbiol; 2005 Jun; 101(3):303-18. PubMed ID: 15925713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid measurement and prediction of bacterial contamination in milk using an oxygen electrode.
    Numthuam S; Suzuki H; Fukuda J; Phunsiri S; Rungchang S; Satake T
    Foodborne Pathog Dis; 2009 Mar; 6(2):187-92. PubMed ID: 19105631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature.
    Nuin M; Alfaro B; Cruz Z; Argarate N; George S; Le Marc Y; Olley J; Pin C
    Int J Food Microbiol; 2008 Oct; 127(3):193-9. PubMed ID: 18692267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basis of predictive mycology.
    Dantigny P; Guilmart A; Bensoussan M
    Int J Food Microbiol; 2005 Apr; 100(1-3):187-96. PubMed ID: 15854704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk.
    Chen H
    Food Microbiol; 2007 May; 24(3):197-204. PubMed ID: 17188197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.