These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11875971)

  • 21. [Mechanism of action of aspartic proteases. IV.Conformational characteristics of a substrate and an inhibitor of rhizopuspepsin ].
    Kashparov IV; Popov ME; Popov EM
    Bioorg Khim; 1999 Jun; 25(6):423-34. PubMed ID: 10505230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X-ray structure of HIV-1 protease in situ product complex.
    Bihani S; Das A; Prashar V; Ferrer JL; Hosur MV
    Proteins; 2009 Feb; 74(3):594-602. PubMed ID: 18704947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tyramine fragment binding to BACE-1.
    Kuglstatter A; Stahl M; Peters JU; Huber W; Stihle M; Schlatter D; Benz J; Ruf A; Roth D; Enderle T; Hennig M
    Bioorg Med Chem Lett; 2008 Feb; 18(4):1304-7. PubMed ID: 18226904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations.
    Xu Y; Li MJ; Greenblatt H; Chen W; Paz A; Dym O; Peleg Y; Chen T; Shen X; He J; Jiang H; Silman I; Sussman JL
    Acta Crystallogr D Biol Crystallogr; 2012 Jan; 68(Pt 1):13-25. PubMed ID: 22194329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a small molecule nonpeptide active site beta-secretase inhibitor that displays a nontraditional binding mode for aspartyl proteases.
    Coburn CA; Stachel SJ; Li YM; Rush DM; Steele TG; Chen-Dodson E; Holloway MK; Xu M; Huang Q; Lai MT; DiMuzio J; Crouthamel MC; Shi XP; Sardana V; Chen Z; Munshi S; Kuo L; Makara GM; Annis DA; Tadikonda PK; Nash HM; Vacca JP; Wang T
    J Med Chem; 2004 Dec; 47(25):6117-9. PubMed ID: 15566281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The three-dimensional X-ray crystal structure of the aspartic proteinase native to Trichoderma reesei complexed with a renin inhibitor CP-80794.
    Pitts JE; Crawford MD; Nugent PG; Wester RT; Cooper JB; Mantyla A; Fagerstrom R; Nevalainen H
    Adv Exp Med Biol; 1995; 362():543-7. PubMed ID: 8540369
    [No Abstract]   [Full Text] [Related]  

  • 27. Crystal structures of Aspergillus oryzae aspartic proteinase and its complex with an inhibitor pepstatin at 1.9A resolution.
    Kamitori S; Ohtaki A; Ino H; Takeuchi M
    J Mol Biol; 2003 Mar; 326(5):1503-11. PubMed ID: 12595261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flap flexibility amongst plasmepsins I, II, III, IV, and V: Sequence, structural, and molecular dynamics analyses.
    McGillewie L; Soliman ME
    Proteins; 2015 Sep; 83(9):1693-705. PubMed ID: 26146842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The conserved cis-Pro39 residue plays a crucial role in the proper positioning of the catalytic base Asp38 in ketosteroid isomerase from Comamonas testosteroni.
    Nam GH; Cha SS; Yun YS; Oh YH; Hong BH; Lee HS; Choi KY
    Biochem J; 2003 Oct; 375(Pt 2):297-305. PubMed ID: 12852789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flap position of free memapsin 2 (beta-secretase), a model for flap opening in aspartic protease catalysis.
    Hong L; Tang J
    Biochemistry; 2004 Apr; 43(16):4689-95. PubMed ID: 15096037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Domain flexibility in aspartic proteinases.
    Sali A; Veerapandian B; Cooper JB; Moss DS; Hofmann T; Blundell TL
    Proteins; 1992 Feb; 12(2):158-70. PubMed ID: 1603805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Conserved interactions of the active carboxyls in pepsin-like enzymes and retroviral proteases].
    Andreeva NS; Popov ME
    Mol Biol (Mosk); 2002; 36(5):939-44. PubMed ID: 12391858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The molecular structure and catalytic mechanism of a novel carboxyl peptidase from Scytalidium lignicolum.
    Fujinaga M; Cherney MM; Oyama H; Oda K; James MN
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3364-9. PubMed ID: 14993599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A quantum mechanical model of the hydration and acidity of the active site in aspartic proteases.
    Topol IA; Cachau RE; Burt SK; Erickson JW
    Adv Exp Med Biol; 1995; 362():549-54. PubMed ID: 8540370
    [No Abstract]   [Full Text] [Related]  

  • 35. Structural basis for specificity of retroviral proteases.
    Wu J; Adomat JM; Ridky TW; Louis JM; Leis J; Harrison RW; Weber IT
    Biochemistry; 1998 Mar; 37(13):4518-26. PubMed ID: 9521772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. X-ray structures of retroviral proteases and their inhibitor-bound complexes.
    Ringe D
    Methods Enzymol; 1994; 241():157-77. PubMed ID: 7854176
    [No Abstract]   [Full Text] [Related]  

  • 37. Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin.
    Fujimoto Z; Fujii Y; Kaneko S; Kobayashi H; Mizuno H
    J Mol Biol; 2004 Aug; 341(5):1227-35. PubMed ID: 15321718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystallization, preliminary X-ray analysis and Patterson search of a new aspartic protease isolated from human urine.
    Canduri F; Teodoro LG; Lorenzi CC; Gomes RA; Fontes MR; Arni RK; de Azevedo Júnior WF
    Biochem Mol Biol Int; 1998 Oct; 46(2):355-63. PubMed ID: 9801803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Five atomic resolution structures of endothiapepsin inhibitor complexes: implications for the aspartic proteinase mechanism.
    Coates L; Erskine PT; Crump MP; Wood SP; Cooper JB
    J Mol Biol; 2002 May; 318(5):1405-15. PubMed ID: 12083527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioinformatics and molecular modeling in chemical enzymology. Active sites of hydrolases.
    Varfolomeev SD; Uporov IV; Fedorov EV
    Biochemistry (Mosc); 2002 Oct; 67(10):1099-108. PubMed ID: 12460108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.