These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 11876641)

  • 1. Diverse stability and catalytic properties of human tryptase alpha and beta isoforms are mediated by residue differences at the S1 pocket.
    Selwood T; Wang ZM; McCaslin DR; Schechter NM
    Biochemistry; 2002 Mar; 41(10):3329-40. PubMed ID: 11876641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray structures of free and leupeptin-complexed human alphaI-tryptase mutants: indication for an alpha-->beta-tryptase transition.
    Rohr KB; Selwood T; Marquardt U; Huber R; Schechter NM; Bode W; Than ME
    J Mol Biol; 2006 Mar; 357(1):195-209. PubMed ID: 16414069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of human tryptase-beta with small molecule inhibitors provides new insights into the unusual functional instability and quaternary structure of the protease.
    Selwood T; Smolensky H; McCaslin DR; Schechter NM
    Biochemistry; 2005 Mar; 44(9):3580-90. PubMed ID: 15736967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural changes associated with the spontaneous inactivation of the serine proteinase human tryptase.
    Schechter NM; Eng GY; Selwood T; McCaslin DR
    Biochemistry; 1995 Aug; 34(33):10628-38. PubMed ID: 7654717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure.
    Selwood T; McCaslin DR; Schechter NM
    Biochemistry; 1998 Sep; 37(38):13174-83. PubMed ID: 9748324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of three distinct catalytic forms of human tryptase-beta: their interrelationships and relevance.
    Schechter NM; Choi EJ; Selwood T; McCaslin DR
    Biochemistry; 2007 Aug; 46(33):9615-29. PubMed ID: 17655281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of human lung tryptase: evidence for a re-activatable tetrameric intermediate and active monomers.
    Addington AK; Johnson DA
    Biochemistry; 1996 Oct; 35(42):13511-8. PubMed ID: 8885830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of human alpha1-tryptase reveals a blocked substrate-binding region.
    Marquardt U; Zettl F; Huber R; Bode W; Sommerhoff C
    J Mol Biol; 2002 Aug; 321(3):491-502. PubMed ID: 12162961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human tryptases alpha and beta/II are functionally distinct due, in part, to a single amino acid difference in one of the surface loops that forms the substrate-binding cleft.
    Huang C; Li L; Krilis SA; Chanasyk K; Tang Y; Li Z; Hunt JE; Stevens RL
    J Biol Chem; 1999 Jul; 274(28):19670-6. PubMed ID: 10391906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bovine tryptases. cDNA cloning, tissue specific expression and characterization of the lung isoform.
    Gambacurta A; Fiorucci L; Basili P; Erba F; Amoresano A; Ascoli F
    Eur J Biochem; 2003 Feb; 270(3):507-17. PubMed ID: 12542700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous inactivation of human lung tryptase as probed by size-exclusion chromatography and chemical cross-linking: dissociation of active tetrameric enzyme into inactive monomers is the primary event of the entire process.
    Kozik A; Potempa J; Travis J
    Biochim Biophys Acta; 1998 Jun; 1385(1):139-48. PubMed ID: 9630576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histidines are critical for heparin-dependent activation of mast cell tryptase.
    Hallgren J; Bäckström S; Estrada S; Thuveson M; Pejler G
    J Immunol; 2004 Aug; 173(3):1868-75. PubMed ID: 15265919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural requirements and mechanism for heparin-dependent activation and tetramerization of human betaI- and betaII-tryptase.
    Hallgren J; Lindahl S; Pejler G
    J Mol Biol; 2005 Jan; 345(1):129-39. PubMed ID: 15567416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional properties of Bos taurus tryptase: a search for a possible propeptide processing role.
    Fiorucci L; Pallaoro M; Erba F; Colombo AP; Rholam M; Cohen P; Ascoli F
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Jun; 120(2):239-45. PubMed ID: 9787793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The human mast cell tryptase tetramer: a fascinating riddle solved by structure.
    Sommerhoff CP; Bode W; Matschiner G; Bergner A; Fritz H
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):75-89. PubMed ID: 10708850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human skin tryptase: kinetic characterization of its spontaneous inactivation.
    Schechter NM; Eng GY; McCaslin DR
    Biochemistry; 1993 Mar; 32(10):2617-25. PubMed ID: 8448118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multibranch and pseudopeptide approach for design of novel inhibitors of subtilisin kexin isozyme-1.
    Basak S; Mohottalage D; Basak A
    Protein Pept Lett; 2006; 13(9):863-76. PubMed ID: 17100641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potent bivalent inhibition of human tryptase-beta by a synthetic inhibitor.
    Selwood T; Elrod KC; Schechter NM
    Biol Chem; 2003 Dec; 384(12):1605-11. PubMed ID: 14719803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of active monomers from tetrameric human beta-tryptase.
    Fajardo I; Pejler G
    Biochem J; 2003 Feb; 369(Pt 3):603-10. PubMed ID: 12387726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore.
    Pereira PJ; Bergner A; Macedo-Ribeiro S; Huber R; Matschiner G; Fritz H; Sommerhoff CP; Bode W
    Nature; 1998 Mar; 392(6673):306-11. PubMed ID: 9521329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.