These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 11876775)

  • 1. Learning the invariance properties of complex cells from their responses to natural stimuli.
    Einhäuser W; Kayser C; König P; Körding KP
    Eur J Neurosci; 2002 Feb; 15(3):475-86. PubMed ID: 11876775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local intracortical connections in the cat's visual cortex: postnatal development and plasticity.
    Ghose GM; Freeman RD; Ohzawa I
    J Neurophysiol; 1994 Sep; 72(3):1290-303. PubMed ID: 7807212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.
    Tanaka T; Aoyagi T; Kaneko T
    Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast constancy in natural scenes in shadow or direct light: A proposed role for contrast-normalisation (non-specific suppression) in visual cortex.
    Lauritzen JS; Tolhurst DJ
    Network; 2005; 16(2-3):151-73. PubMed ID: 16411494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical evidence of subcortical contributions to the orientation selectivity and columns of the cat's primary visual cortex.
    Zhan X; Shou T
    Neurosci Lett; 2002 May; 324(3):247-51. PubMed ID: 12009533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation selectivity of thalamic input to simple cells of cat visual cortex.
    Ferster D; Chung S; Wheat H
    Nature; 1996 Mar; 380(6571):249-52. PubMed ID: 8637573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
    Jagadeesh B; Wheat HS; Kontsevich LL; Tyler CW; Ferster D
    J Neurophysiol; 1997 Nov; 78(5):2772-89. PubMed ID: 9356425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptive field structure varies with layer in the primary visual cortex.
    Martinez LM; Wang Q; Reid RC; Pillai C; Alonso JM; Sommer FT; Hirsch JA
    Nat Neurosci; 2005 Mar; 8(3):372-9. PubMed ID: 15711543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is the early visual system optimised to be energy efficient?
    Vincent BT; Baddeley RJ; Troscianko T; Gilchrist ID
    Network; 2005; 16(2-3):175-90. PubMed ID: 16411495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An infomax-based learning rule that generates cells similar to visual cortical neurons.
    Okajima K
    Neural Netw; 2001 Nov; 14(9):1173-80. PubMed ID: 11718418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting neuronal responses during natural vision.
    David SV; Gallant JL
    Network; 2005; 16(2-3):239-60. PubMed ID: 16411498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex.
    Ghose GM; Ohzawa I; Freeman RD
    J Neurophysiol; 1994 Jan; 71(1):330-46. PubMed ID: 8158235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal interactions and the spatial phase preferences of visual neurons.
    Levitt JB; Sanchez RM; Smith EL; Movshon JA
    Exp Brain Res; 1990; 80(2):441-5. PubMed ID: 2358056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extensive integration field beyond the classical receptive field of cat's striate cortical neurons--classification and tuning properties.
    Li CY; Li W
    Vision Res; 1994 Sep; 34(18):2337-55. PubMed ID: 7975275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circuits that build visual cortical receptive fields.
    Hirsch JA; Martinez LM
    Trends Neurosci; 2006 Jan; 29(1):30-9. PubMed ID: 16309753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contextual modulation of orientation tuning contributes to efficient processing of natural stimuli.
    Felsen G; Touryan J; Dan Y
    Network; 2005; 16(2-3):139-49. PubMed ID: 16411493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque.
    Tovee MJ; Rolls ET; Azzopardi P
    J Neurophysiol; 1994 Sep; 72(3):1049-60. PubMed ID: 7807195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation.
    DeAngelis GC; Ohzawa I; Freeman RD
    J Neurophysiol; 1993 Apr; 69(4):1118-35. PubMed ID: 8492152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of receptive field size in primary visual cortex.
    Malone BJ; Kumar VR; Ringach DL
    J Neurophysiol; 2007 Jan; 97(1):407-14. PubMed ID: 17021020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invariant visual responses from attentional gain fields.
    Salinas E; Abbott LF
    J Neurophysiol; 1997 Jun; 77(6):3267-72. PubMed ID: 9212273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.