These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 11877504)
1. Resilient RTN fast spiking in Kv3.1 null mice suggests redundancy in the action potential repolarization mechanism. Porcello DM; Ho CS; Joho RH; Huguenard JR J Neurophysiol; 2002 Mar; 87(3):1303-10. PubMed ID: 11877504 [TBL] [Abstract][Full Text] [Related]
2. Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. Erisir A; Lau D; Rudy B; Leonard CS J Neurophysiol; 1999 Nov; 82(5):2476-89. PubMed ID: 10561420 [TBL] [Abstract][Full Text] [Related]
3. Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. Lau D; Vega-Saenz de Miera EC; Contreras D; Ozaita A; Harvey M; Chow A; Noebels JL; Paylor R; Morgan JI; Leonard CS; Rudy B J Neurosci; 2000 Dec; 20(24):9071-85. PubMed ID: 11124984 [TBL] [Abstract][Full Text] [Related]
4. Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Baranauskas G; Tkatch T; Nagata K; Yeh JZ; Surmeier DJ Nat Neurosci; 2003 Mar; 6(3):258-66. PubMed ID: 12592408 [TBL] [Abstract][Full Text] [Related]
5. Increased gamma- and decreased delta-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons. Joho RH; Ho CS; Marks GA J Neurophysiol; 1999 Oct; 82(4):1855-64. PubMed ID: 10515974 [TBL] [Abstract][Full Text] [Related]
6. Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. Martina M; Schultz JH; Ehmke H; Monyer H; Jonas P J Neurosci; 1998 Oct; 18(20):8111-25. PubMed ID: 9763458 [TBL] [Abstract][Full Text] [Related]
7. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. Lien CC; Jonas P J Neurosci; 2003 Mar; 23(6):2058-68. PubMed ID: 12657664 [TBL] [Abstract][Full Text] [Related]
8. BK and Kv3.1 potassium channels control different aspects of deep cerebellar nuclear neurons action potentials and spiking activity. Pedroarena CM Cerebellum; 2011 Dec; 10(4):647-58. PubMed ID: 21750937 [TBL] [Abstract][Full Text] [Related]
9. Modulation of the kv3.1b potassium channel isoform adjusts the fidelity of the firing pattern of auditory neurons. Macica CM; von Hehn CA; Wang LY; Ho CS; Yokoyama S; Joho RH; Kaczmarek LK J Neurosci; 2003 Feb; 23(4):1133-41. PubMed ID: 12598601 [TBL] [Abstract][Full Text] [Related]
10. Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse. Goldberg EM; Watanabe S; Chang SY; Joho RH; Huang ZJ; Leonard CS; Rudy B J Neurosci; 2005 May; 25(21):5230-5. PubMed ID: 15917463 [TBL] [Abstract][Full Text] [Related]
11. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Albéri L; Lintas A; Kretz R; Schwaller B; Villa AE J Neurophysiol; 2013 Jun; 109(11):2827-41. PubMed ID: 23486206 [TBL] [Abstract][Full Text] [Related]
12. Heterologous expression of the Kv3.1 potassium channel eliminates spike broadening and the induction of a depolarizing afterpotential in the peptidergic bag cell neurons. Whim MD; Kaczmarek LK J Neurosci; 1998 Nov; 18(22):9171-80. PubMed ID: 9801357 [TBL] [Abstract][Full Text] [Related]
13. K Boddum K; Hougaard C; Xiao-Ying Lin J; von Schoubye NL; Jensen HS; Grunnet M; Jespersen T Neuropharmacology; 2017 May; 118():102-112. PubMed ID: 28242439 [TBL] [Abstract][Full Text] [Related]
14. Differential subcellular localization of the two alternatively spliced isoforms of the Kv3.1 potassium channel subunit in brain. Ozaita A; Martone ME; Ellisman MH; Rudy B J Neurophysiol; 2002 Jul; 88(1):394-408. PubMed ID: 12091563 [TBL] [Abstract][Full Text] [Related]
15. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Rudy B; McBain CJ Trends Neurosci; 2001 Sep; 24(9):517-26. PubMed ID: 11506885 [TBL] [Abstract][Full Text] [Related]
16. Action Potential Broadening in Capsaicin-Sensitive DRG Neurons from Frequency-Dependent Reduction of Kv3 Current. Liu PW; Blair NT; Bean BP J Neurosci; 2017 Oct; 37(40):9705-9714. PubMed ID: 28877968 [TBL] [Abstract][Full Text] [Related]
17. Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. Matsukawa H; Wolf AM; Matsushita S; Joho RH; Knöpfel T J Neurosci; 2003 Aug; 23(20):7677-84. PubMed ID: 12930807 [TBL] [Abstract][Full Text] [Related]
18. Kv3.1 and Kv3.3 subunits differentially contribute to Kv3 channels and action potential repolarization in principal neurons of the auditory brainstem. Choudhury N; Linley D; Richardson A; Anderson M; Robinson SW; Marra V; Ciampani V; Walter SM; Kopp-Scheinpflug C; Steinert JR; Forsythe ID J Physiol; 2020 Jun; 598(11):2199-2222. PubMed ID: 32246836 [TBL] [Abstract][Full Text] [Related]
19. Kv3.1-Kv3.2 channels underlie a high-voltage-activating component of the delayed rectifier K+ current in projecting neurons from the globus pallidus. Hernández-Pineda R; Chow A; Amarillo Y; Moreno H; Saganich M; Vega-Saenz de Miera EC; Hernández-Cruz A; Rudy B J Neurophysiol; 1999 Sep; 82(3):1512-28. PubMed ID: 10482766 [TBL] [Abstract][Full Text] [Related]
20. Muscle and motor-skill dysfunction in a K+ channel-deficient mouse are not due to altered muscle excitability or fiber type but depend on the genetic background. Sánchez JA; Ho CS; Vaughan DM; Garcia MC; Grange RW; Joho RH Pflugers Arch; 2000 May; 440(1):34-41. PubMed ID: 10863995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]