These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 11877527)

  • 1. Phase relationships between segmentally organized oscillators in the leech heartbeat pattern generating network.
    Masino MA; Calabrese RL
    J Neurophysiol; 2002 Mar; 87(3):1572-85. PubMed ID: 11877527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Period differences between segmental oscillators produce intersegmental phase differences in the leech heartbeat timing network.
    Masino MA; Calabrese RL
    J Neurophysiol; 2002 Mar; 87(3):1603-15. PubMed ID: 11877529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model of intersegmental coordination in the leech heartbeat neuronal network.
    Hill AA; Masino MA; Calabrese RL
    J Neurophysiol; 2002 Mar; 87(3):1586-602. PubMed ID: 11877528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional asymmetry in the Leech Heartbeat Timing Network is revealed by driving the network across various cycle periods.
    Masino MA; Calabrese RL
    J Neurosci; 2002 Jun; 22(11):4418-27. PubMed ID: 12040049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed model of intersegmental coordination in the timing network of the leech heartbeat central pattern generator.
    Jezzini SH; Hill AA; Kuzyk P; Calabrese RL
    J Neurophysiol; 2004 Feb; 91(2):958-77. PubMed ID: 14573559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heartbeat control in leeches. II. Fictive motor pattern.
    Wenning A; Hill AA; Calabrese RL
    J Neurophysiol; 2004 Jan; 91(1):397-409. PubMed ID: 13679405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.
    Norris BJ; Weaver AL; Wenning A; García PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2983-91. PubMed ID: 17728387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns.
    Calabrese RL; Nadim F; Olsen OH
    J Neurobiol; 1995 Jul; 27(3):390-402. PubMed ID: 7673897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.
    Olypher A; Cymbalyuk G; Calabrese RL
    J Neurophysiol; 2006 Dec; 96(6):2857-67. PubMed ID: 16943313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bringing up the rear: new premotor interneurons add regional complexity to a segmentally distributed motor pattern.
    Wenning A; Norris BJ; Doloc-Mihu A; Calabrese RL
    J Neurophysiol; 2011 Nov; 106(5):2201-15. PubMed ID: 21775711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A central pattern generator producing alternative outputs: temporal pattern of premotor activity.
    Norris BJ; Weaver AL; Morris LG; Wenning A; García PA; Calabrese RL
    J Neurophysiol; 2006 Jul; 96(1):309-26. PubMed ID: 16611849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons.
    Tobin AE; Calabrese RL
    J Neurophysiol; 2005 Dec; 94(6):3938-50. PubMed ID: 16093342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and coordination of heartbeat timing oscillation in the medicinal leech. I. Oscillation in isolated ganglia.
    Peterson EL
    J Neurophysiol; 1983 Mar; 49(3):611-26. PubMed ID: 6834089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms.
    Cymbalyuk GS; Gaudry Q; Masino MA; Calabrese RL
    J Neurosci; 2002 Dec; 22(24):10580-92. PubMed ID: 12486150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.
    Norris BJ; Weaver AL; Wenning A; García PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2992-3005. PubMed ID: 17804574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity pattern of an oscillatory network after synaptic block in the leech central nervous system.
    Schmidt J
    J Comp Physiol A; 1998 Apr; 182(4):501-7. PubMed ID: 9530838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model for intersegmental coordination of leech swimming: central and sensory mechanisms.
    Cang J; Friesen WO
    J Neurophysiol; 2002 Jun; 87(6):2760-9. PubMed ID: 12037178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analyses of the leech swim oscillator.
    Friesen WO; Hocker CG
    J Neurophysiol; 2001 Aug; 86(2):824-35. PubMed ID: 11495953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graded inhibitory synaptic transmission between leech interneurons: assessing the roles of two kinetically distinct low-threshold Ca currents.
    Ivanov AI; Calabrese RL
    J Neurophysiol; 2006 Jul; 96(1):218-34. PubMed ID: 16641379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.