These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 11877527)

  • 21. Control of multiple impulse-initiation sites in a leech interneuron.
    Calabrese RL
    J Neurophysiol; 1980 Nov; 44(5):878-96. PubMed ID: 6255110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.
    GarcĂ­a PS; Wright TM; Cunningham IR; Calabrese RL
    J Neurophysiol; 2008 Sep; 100(3):1354-71. PubMed ID: 18579654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuronal factors influencing the decision to swim in the medicinal leech.
    Brodfuehrer PD; Burns A
    Neurobiol Learn Mem; 1995 Mar; 63(2):192-9. PubMed ID: 7663893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patterns of presynaptic activity and synaptic strength interact to produce motor output.
    Wright TM; Calabrese RL
    J Neurosci; 2011 Nov; 31(48):17555-71. PubMed ID: 22131417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic analysis of a rhythmic neural circuit in the leech Hirudo medicinalis.
    Peterson EL; Calabrese RL
    J Neurophysiol; 1982 Feb; 47(2):256-71. PubMed ID: 7062099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heartbeat control in leeches. I. Constriction pattern and neural modulation of blood pressure in intact animals.
    Wenning A; Cymbalyuk GS; Calabrese RL
    J Neurophysiol; 2004 Jan; 91(1):382-96. PubMed ID: 13679406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An oscillatory neuronal circuit generating a locomotory rhythm.
    Friesen WO; Poon M; Stent GS
    Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3734-8. PubMed ID: 1068483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuronal generation of the leech swimming movement.
    Stent GS; Kristan WB; Friesen WO; Ort CA; Poon M; Calabrese RL
    Science; 1978 Jun; 200(4348):1348-57. PubMed ID: 663615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasticity in the multifunctional buccal central pattern generator of Helisoma illuminated by the identification of phase 3 interneurons.
    Quinlan EM; Murphy AD
    J Neurophysiol; 1996 Feb; 75(2):561-74. PubMed ID: 8714635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of leech swimming activity by the cephalic ganglia.
    Brodfuehrer PD; Friesen WO
    J Neurobiol; 1986 Nov; 17(6):697-705. PubMed ID: 3794692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state.
    Hedwig B
    J Neurophysiol; 2000 Feb; 83(2):712-22. PubMed ID: 10669487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusk Melibe leonina.
    Sakurai A; Gunaratne CA; Katz PS
    J Neurophysiol; 2014 Sep; 112(6):1317-28. PubMed ID: 24920032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation and reconfiguration of fictive feeding by the octopamine-containing modulatory OC interneurons in the snail Lymnaea.
    Vehovszky A ; Elliott CJ
    J Neurophysiol; 2001 Aug; 86(2):792-808. PubMed ID: 11495951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation and coordination of heartbeat timing oscillation in the medicinal leech. II. Intersegmental coordination.
    Peterson EL
    J Neurophysiol; 1983 Mar; 49(3):627-38. PubMed ID: 6834090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coordination of limb movements: three types of intersegmental interneurons in the swimmeret system and their responses to changes in excitation.
    Namba H; Mulloney B
    J Neurophysiol; 1999 May; 81(5):2437-50. PubMed ID: 10322079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bursts of information: coordinating interneurons encode multiple parameters of a periodic motor pattern.
    Mulloney B; Harness PI; Hall WM
    J Neurophysiol; 2006 Feb; 95(2):850-61. PubMed ID: 16236775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. II. Role of segmental swim-initiating interneurons.
    Brodfuehrer PD; Friesen WO
    J Comp Physiol A; 1986 Oct; 159(4):503-10. PubMed ID: 3023603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of the segmental swim-generating system by a pair of identified interneurons in the leech head ganglion.
    Brodfuehrer PD; Parker HJ; Burns A; Berg M
    J Neurophysiol; 1995 Mar; 73(3):983-92. PubMed ID: 7608783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of spike-mediated synaptic transmission by presynaptic background Ca2+ in leech heart interneurons.
    Ivanov AI; Calabrese RL
    J Neurosci; 2003 Feb; 23(4):1206-18. PubMed ID: 12598609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.