These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1102 related articles for article (PubMed ID: 11877575)

  • 21. In vivo effects of dialysate flow rate on Kt/V in maintenance hemodialysis patients.
    Hauk M; Kuhlmann MK; Riegel W; Köhler H
    Am J Kidney Dis; 2000 Jan; 35(1):105-11. PubMed ID: 10620551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The monitoring of dialysis dose by ionic dialysance-based Kt reveals less dialysis adequacy than the Kt/V(UREA)-based measurement in critically ill patients with acute renal failure].
    Serra Cabañas N; Barros Freiría X; Garro Martínez J; Blasco Pelícano M; Maduell Canals F; Torras Rabasa A; Poch López de Briñas E
    Nefrologia; 2010; 30(2):232-5. PubMed ID: 20393623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors associated with urea reduction ratio in acute renal failure.
    Liangos O; Rao M; Ruthazer R; Balakrishnan VS; Modi G; Pereira BJ; Jaber BL
    Artif Organs; 2004 Dec; 28(12):1076-81. PubMed ID: 15554935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel mathematical method based on urea kinetic modeling for computing the dialysis dose.
    Prado M; Roa L; Palma A; Milán JA
    Comput Methods Programs Biomed; 2004 May; 74(2):109-28. PubMed ID: 15013593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of two methods for predicting equilibrated Kt/V (eKt/V) using true eKt/V value.
    Marsenić O; Peco-Antić A; Jovanović O
    Pediatr Nephrol; 1999 Jun; 13(5):418-22. PubMed ID: 10412862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of methods for determining urea distribution volume for routine use in on-line monitoring of haemodialysis adequacy.
    Lindley EJ; Chamney PW; Wuepper A; Ingles H; Tattersall JE; Will EJ
    Nephrol Dial Transplant; 2009 Jan; 24(1):211-6. PubMed ID: 18697799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prescribing an equilibrated intermittent hemodialysis dose in intensive care unit acute renal failure.
    Kanagasundaram NS; Greene T; Larive AB; Daugirdas JT; Depner TA; Garcia M; Paganini EP;
    Kidney Int; 2003 Dec; 64(6):2298-310. PubMed ID: 14633155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Urea distribution volume and ionic dialysance].
    Pozzoni P; Pozzi M; Di Filippo S
    G Ital Nefrol; 2004; 21 Suppl 30():S226-30. PubMed ID: 15750991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Survival comparison between hemodialysis and peritoneal dialysis based on matched doses of delivered therapy.
    Keshaviah P; Collins AJ; Ma JZ; Churchill DN; Thorpe KE
    J Am Soc Nephrol; 2002 Jan; 13 Suppl 1():S48-52. PubMed ID: 11792762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of different sampling methods for measurement of post dialysis blood urea nitrogen on urea kinetic modeling derived parameters in patients undergoing long-term hemodialysis.
    Lai YH; Guh JY; Chen HC; Tsai JH
    ASAIO J; 1995; 41(2):211-5. PubMed ID: 7640430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic hemodialysis: Kt/V or solute removal index to evaluate the effective delivered dose?
    Di Filippo S; Manzoni C; Corti M; Locatelli F
    Int J Artif Organs; 1998 Sep; 21(9):509-14. PubMed ID: 9828055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of postdialysis urea rebound on the quantification of pediatric hemodialysis.
    Marsenić O; Pavlicić D; Bigović G; Peco-Antić A; Jovanović O
    Nephron; 2000 Feb; 84(2):124-9. PubMed ID: 10657712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equivalent continuous clearances EKR and stdK in incremental haemodialysis.
    Vartia A
    Nephrol Dial Transplant; 2012 Feb; 27(2):777-84. PubMed ID: 21725044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal: computational modeling.
    Kim JC; Cruz D; Garzotto F; Kaushik M; Teixeria C; Baldwin M; Baldwin I; Nalesso F; Kim JH; Kang E; Kim HC; Ronco C
    Blood Purif; 2013; 35(1-3):106-11. PubMed ID: 23343554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlates of urea kinetic modeling during hemodialysis in patients with acute renal failure.
    Jaber BL; King AJ; Cendoroglo M; Cunniff-Jaber PJ; Balakrishnan VS; Ruthazer R; Pereira BJ
    Blood Purif; 2002; 20(2):154-60. PubMed ID: 11818678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic dialysance: a new valid parameter for quantification of dialysis efficiency in acute renal failure?
    Ridel C; Osman D; Mercadal L; Anguel N; Petitclerc T; Richard C; Vinsonneau C
    Intensive Care Med; 2007 Mar; 33(3):460-5. PubMed ID: 17235509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical and numerical analysis of different adequacy indices for hemodialysis and peritoneal dialysis.
    Waniewski J; Debowska M; Lindholm B
    Blood Purif; 2006; 24(4):355-66. PubMed ID: 16685118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Urea volume of distribution exceeds total body water in patients with acute renal failure.
    Himmelfarb J; Evanson J; Hakim RM; Freedman S; Shyr Y; Ikizler TA
    Kidney Int; 2002 Jan; 61(1):317-23. PubMed ID: 11786114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sustained low-efficiency dialysis in the ICU: cost, anticoagulation, and solute removal.
    Berbece AN; Richardson RM
    Kidney Int; 2006 Sep; 70(5):963-8. PubMed ID: 16850023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rebound kinetics of beta2-microglobulin after hemodialysis.
    Leypoldt JK; Cheung AK; Deeter RB
    Kidney Int; 1999 Oct; 56(4):1571-7. PubMed ID: 10504510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 56.