These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11878000)

  • 21. X-ray Computed Tomography for Flame-Structure Analysis of Laminar Premixed Flames.
    Boigné E; Muhunthan P; Mohaddes D; Wang Q; Sobhani S; Hinshaw W; Ihme M
    Combust Flame; 2019 Feb; 200():142-154. PubMed ID: 30532316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurements of OH concentration in flames at high pressure by two-optical path laser-induced fluorescence.
    Desgroux P; Domingues E; Cottereau MJ
    Appl Opt; 1992 May; 31(15):2831-8. PubMed ID: 20725218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental Investigation of Lean Methane-Air Laminar Premixed Flames at Engine-Relevant Temperatures.
    Luo C; Yu Z; Wang Y; Ai Y
    ACS Omega; 2021 Jul; 6(28):17977-17987. PubMed ID: 34308032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroxyl and its concentration profile in methane-air flames.
    Bechtel JH; Teets RE
    Appl Opt; 1979 Dec; 18(24):4138-44. PubMed ID: 20216770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Picosecond planar laser-induced fluorescence measurements of OH A 2 + ( ' = 2) lifetime and energy transfer in atmospheric pressure flames.
    C Bormann F; Nielsen T; Burrows M; Andresen P
    Appl Opt; 1997 Aug; 36(24):6129-40. PubMed ID: 18259461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI.
    Wu Y; Bottom A; Zhang Z; Ombrello TM; Katta VR
    Opt Express; 2011 Nov; 19(24):23997-4004. PubMed ID: 22109424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO Emission from an Impinging Non-Premixed Flame.
    Chien YC; Escofet-Martin D; Dunn-Rankin D
    Combust Flame; 2016 Dec; 174():16-24. PubMed ID: 28989179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature dependence of laser-induced fluorescence of nitric oxide in laminar premixed atmospheric-pressure flames.
    Mokhov AV; Levinsky HB; van der Meij CE
    Appl Opt; 1997 May; 36(15):3233-43. PubMed ID: 18253331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments.
    Vargas AC; García AM; Arrieta CE; Sierra Del Rio J; Amell A
    ACS Omega; 2020 Oct; 5(39):25095-25103. PubMed ID: 33043188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A-X excitation schemes.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2003 Aug; 42(24):4922-36. PubMed ID: 12952340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry.
    Lee T; Bessler WG; Kronemayer H; Schulz C; Jeffries JB
    Appl Opt; 2005 Nov; 44(31):6718-28. PubMed ID: 16270561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.
    Mansour MS; Chen YC
    Appl Opt; 1996 Jul; 35(21):4252-60. PubMed ID: 21102834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous high-speed SO
    Yang X; Fu C; Wang G; Li Z; Li T; Gao Y
    Appl Opt; 2019 Apr; 58(10):C121-C129. PubMed ID: 31045082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.
    Tian Z; Li Y; Zhang T; Zhu A; Qi F
    J Phys Chem A; 2008 Dec; 112(51):13549-55. PubMed ID: 19053546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies.
    Wang J; Chaos M; Yang B; Cool TA; Dryer FL; Kasper T; Hansen N; Osswald P; Kohse-Höinghaus K; Westmoreland PR
    Phys Chem Chem Phys; 2009 Mar; 11(9):1328-39. PubMed ID: 19224033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental apparatus with full optical access for combustion experiments with laminar flames from a single circular nozzle at elevated pressures.
    Joo PH; Gao J; Li Z; Aldén M
    Rev Sci Instrum; 2015 Mar; 86(3):035115. PubMed ID: 25832283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A-X(0,1) excitation.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2003 Apr; 42(12):2031-42. PubMed ID: 12716143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of PAH and soot precursors in benzene flames by addition of ethanol.
    Golea D; Rezgui Y; Guemini M; Hamdane S
    J Phys Chem A; 2012 Apr; 116(14):3625-42. PubMed ID: 22429107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SpraySyn-A standardized burner configuration for nanoparticle synthesis in spray flames.
    Schneider F; Suleiman S; Menser J; Borukhovich E; Wlokas I; Kempf A; Wiggers H; Schulz C
    Rev Sci Instrum; 2019 Aug; 90(8):085108. PubMed ID: 31472649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence spectroscopy of aromatic species produced in rich premixed ethylene flames.
    Ciajolo A; Ragucci R; Apicella B; Barbella R; de Joannon M; Tregrossi A
    Chemosphere; 2001; 42(5-7):835-41. PubMed ID: 11219710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.