These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 11878032)
1. Warmer winters: are planktonic algal populations in Sweden's largest lakes affected? Weyhenmeyer GA Ambio; 2001 Dec; 30(8):565-71. PubMed ID: 11878032 [TBL] [Abstract][Full Text] [Related]
2. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Berger SA; Diehl S; Stibor H; Trommer G; Ruhenstroth M; Wild A; Weigert A; Jäger CG; Striebel M Oecologia; 2007 Jan; 150(4):643-54. PubMed ID: 17024384 [TBL] [Abstract][Full Text] [Related]
3. Warming winters in lakes: Later ice onset promotes consumer overwintering and shapes springtime planktonic food webs. Hébert MP; Beisner BE; Rautio M; Fussmann GF Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34810251 [TBL] [Abstract][Full Text] [Related]
4. Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes. Gerten D; Adrian R ScientificWorldJournal; 2002 Mar; 2():586-606. PubMed ID: 12805986 [TBL] [Abstract][Full Text] [Related]
5. Recruitment of pelagic fish in an unstable climate: studies in Sweden's four largest lakes. Nyberg P; Bergstrand E; Degerman E; Enderlein O Ambio; 2001 Dec; 30(8):559-64. PubMed ID: 11878031 [TBL] [Abstract][Full Text] [Related]
6. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management. He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399 [TBL] [Abstract][Full Text] [Related]
7. Phytoplankton and water quality characterization: experiences from the Swedish large lakes Mälaren, Hjälmaren, Vättern and Vänern. Willén E Ambio; 2001 Dec; 30(8):529-37. PubMed ID: 11878027 [TBL] [Abstract][Full Text] [Related]
8. Recent climate extremes alter alpine lake ecosystems. Parker BR; Vinebrooke RD; Schindler DW Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12927-31. PubMed ID: 18725641 [TBL] [Abstract][Full Text] [Related]
9. Phytoplankton dynamics in a subarctic fjord during the under-ice - open water transition. Radchenko I; Smirnov V; Ilyash L; Sukhotin A Mar Environ Res; 2021 Feb; 164():105242. PubMed ID: 33429216 [TBL] [Abstract][Full Text] [Related]
10. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes. Özkundakci D; Gsell AS; Hintze T; Täuscher H; Adrian R Glob Chang Biol; 2016 Jan; 22(1):284-98. PubMed ID: 26342133 [TBL] [Abstract][Full Text] [Related]
11. Seasonal dynamics of phytoplankton and planktonic protozoan communities in a northern temperate humic lake: diversity in a dinoflagellate dominated system. Graham JM; Kent AD; Lauster GH; Yannarell AC; Graham LE; Triplett EW Microb Ecol; 2004 Nov; 48(4):528-40. PubMed ID: 15696386 [TBL] [Abstract][Full Text] [Related]
12. The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change: long-term observations and model analysis. Tirok K; Gaedke U Oecologia; 2007 Jan; 150(4):625-42. PubMed ID: 16977461 [TBL] [Abstract][Full Text] [Related]
13. Simulated lake phytoplankton composition shifts toward cyanobacteria dominance in a future warmer climate. Markensten H; Moore K; Persson I Ecol Appl; 2010 Apr; 20(3):752-67. PubMed ID: 20437961 [TBL] [Abstract][Full Text] [Related]
14. Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyll-a in north temperate lakes. Hrycik AR; Isles PDF; Adrian R; Albright M; Bacon LC; Berger SA; Bhattacharya R; Grossart HP; Hejzlar J; Hetherington AL; Knoll LB; Laas A; McDonald CP; Merrell K; Nejstgaard JC; Nelson K; Nõges P; Paterson AM; Pilla RM; Robertson DM; Rudstam LG; Rusak JA; Sadro S; Silow EA; Stockwell JD; Yao H; Yokota K; Pierson DC Glob Chang Biol; 2021 Oct; 27(19):4615-4629. PubMed ID: 34241940 [TBL] [Abstract][Full Text] [Related]
15. Environmental factors associated with phytoplankton succession in a Mediterranean reservoir with a highly fluctuating water level. Fadel A; Atoui A; Lemaire BJ; Vinçon-Leite B; Slim K Environ Monit Assess; 2015 Oct; 187(10):633. PubMed ID: 26383738 [TBL] [Abstract][Full Text] [Related]
16. [Temporal and Spatial Distribution of Environmental Factors and Phytoplankton During Algal Bloom Season in Pengxi River, Three Gorges Reservoir]. Zhou C; Yu JJ; Fu L; Cui YJ; Liu DF; Jiang W; Haffner D; Zhang L Huan Jing Ke Xue; 2016 Mar; 37(3):873-83. PubMed ID: 27337877 [TBL] [Abstract][Full Text] [Related]
17. Massive regime shifts and high activity of heterotrophic bacteria in an ice-covered lake. Bižić-Ionescu M; Amann R; Grossart HP PLoS One; 2014; 9(11):e113611. PubMed ID: 25419654 [TBL] [Abstract][Full Text] [Related]
18. The relationship of the number of hydrobiont species with morphometric characteristics and the productivity of lakes. Alimov AF Dokl Biol Sci; 2000; 375():604-6. PubMed ID: 11211507 [No Abstract] [Full Text] [Related]
19. Strong turbulence benefits toxic and colonial cyanobacteria in water: A potential way of climate change impact on the expansion of Harmful Algal Blooms. Liu M; Ma J; Kang L; Wei Y; He Q; Hu X; Li H Sci Total Environ; 2019 Jun; 670():613-622. PubMed ID: 30909039 [TBL] [Abstract][Full Text] [Related]
20. North Atlantic Oscillation synchronizes food-web interactions in central European lakes. Straile D Proc Biol Sci; 2002 Feb; 269(1489):391-5. PubMed ID: 11886627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]