These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11878381)

  • 1. New processes in the environmental chemistry of nitrite: nitration of phenol upon nitrite photoinduced oxidation.
    Vione D; Maurino V; Minero C; Pelizzetti E
    Environ Sci Technol; 2002 Feb; 36(4):669-76. PubMed ID: 11878381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide.
    Vione D; Maurino V; Minero C; Borghesi D; Lucchiari M; Pelizzetti E
    Environ Sci Technol; 2003 Oct; 37(20):4635-41. PubMed ID: 14594372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenol nitration upon oxidation of nitrite by Mn(III,IV) (hydr)oxides.
    Vione D; Maurino V; Minero C; Pelizzetti E
    Chemosphere; 2004 May; 55(7):941-9. PubMed ID: 15051364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenite oxidation initiated by the UV photolysis of nitrite and nitrate.
    Kim DH; Lee J; Ryu J; Kim K; Choi W
    Environ Sci Technol; 2014 Apr; 48(7):4030-7. PubMed ID: 24617811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic photonitration in homogeneous and heterogeneous aqueous systems.
    Vione D; Maurino V; Minero C; Vincenti M; Pelizzetti E
    Environ Sci Pollut Res Int; 2003; 10(5):321-4. PubMed ID: 14535647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the steady-state [*NO2] in environmental samples. Implication for aromatic photonitration processes induced by nitrate and nitrite.
    Minero C; Maurino V; Pelizzetti E; Vione D
    Environ Sci Pollut Res Int; 2007 Jun; 14(4):241-3. PubMed ID: 17668820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitration and photonitration of naphthalene in aqueous systems.
    Vione D; Maurino V; Minero C; Pelizzetti E
    Environ Sci Technol; 2005 Feb; 39(4):1101-10. PubMed ID: 15773483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil nitrite as a source of atmospheric HONO and OH radicals.
    Su H; Cheng Y; Oswald R; Behrendt T; Trebs I; Meixner FX; Andreae MO; Cheng P; Zhang Y; Pöschl U
    Science; 2011 Sep; 333(6049):1616-8. PubMed ID: 21852453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced disappearance of nitrite in the presence of iron (III).
    Zhang H; Bartlett RJ
    Chemosphere; 2000 Feb; 40(4):411-8. PubMed ID: 10665407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Yield of Nitrite from the Photolysis of Aqueous Nitrate above 300 nm.
    Benedict KB; McFall AS; Anastasio C
    Environ Sci Technol; 2017 Apr; 51(8):4387-4395. PubMed ID: 28340298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Model Assessment of the Occurrence and Reactivity of the Nitrating/Nitrosating Agent Nitrogen Dioxide (
    Vione D
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35956802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrite-Mediated Photooxidation of Vanillin in the Atmospheric Aqueous Phase.
    Pang H; Zhang Q; Lu X; Li K; Chen H; Chen J; Yang X; Ma Y; Ma J; Huang C
    Environ Sci Technol; 2019 Dec; 53(24):14253-14263. PubMed ID: 31729864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of semivolatile diesel exhaust organics for secondary HONO formation.
    Gutzwiller L; Arens F; Baltensperger U; Gäggeler HW; Ammann M
    Environ Sci Technol; 2002 Feb; 36(4):677-82. PubMed ID: 11878382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of phenol with nitrite ion: pathways of formation of nitrophenols in environmental waters.
    Patnaik P; Khoury JN
    Water Res; 2004 Jan; 38(1):206-10. PubMed ID: 14630118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of nitrite and nitrate ions as photosensitizers in the phototransformation of phenolic compounds in seawater.
    Calza P; Vione D; Novelli A; Pelizzetti E; Minero C
    Sci Total Environ; 2012 Nov; 439():67-75. PubMed ID: 23063640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pH and H
    Wang J; Song M; Chen B; Wang L; Zhu R
    Chemosphere; 2017 Oct; 184():1003-1011. PubMed ID: 28658735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interference of Nitrite with Pyrite under Acidic Conditions: Implications for Studies of Chemolithotrophic Denitrification.
    Yan R; Kappler A; Peiffer S
    Environ Sci Technol; 2015 Oct; 49(19):11403-10. PubMed ID: 26335043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals.
    Dutta PK; Pehkonen SO; Sharma VK; Ray AK
    Environ Sci Technol; 2005 Mar; 39(6):1827-34. PubMed ID: 15819243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geochemical and isotopic study of abiotic nitrite reduction coupled to biologically produced Fe(II) oxidation in marine environments.
    Benaiges-Fernandez R; Offeddu FG; Margalef-Marti R; Palau J; Urmeneta J; Carrey R; Otero N; Cama J
    Chemosphere; 2020 Dec; 260():127554. PubMed ID: 32688313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Nitrite Production from the Aqueous Photolysis of Nitrate in the Presence of Vanillic Acid and Implications for the Roles of Light-Absorbing Organics.
    Wang Y; Huang DD; Huang W; Liu B; Chen Q; Huang R; Gen M; Go BR; Chan CK; Li X; Hao T; Tan Y; Hoi KI; Mok KM; Li YJ
    Environ Sci Technol; 2021 Dec; 55(23):15694-15704. PubMed ID: 34784716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.