BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11878660)

  • 1. Effects of temperature and haematocrit on the relationships between blood flow velocity and blood flow in a vessel of fixed diameter.
    Paut O; Bissonnette B
    Br J Anaesth; 2002 Feb; 88(2):277-9. PubMed ID: 11878660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of hematocrit on cerebral blood flow velocity in neonates and infants undergoing deep hypothermic cardiopulmonary bypass.
    Gruber EM; Jonas RA; Newburger JW; Zurakowski D; Hansen DD; Laussen PC
    Anesth Analg; 1999 Aug; 89(2):322-7. PubMed ID: 10439741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral blood flow velocity patterns during cardiac surgery utilizing profound hypothermia with low-flow cardiopulmonary bypass or circulatory arrest in neonates and infants.
    Burrows FA; Bissonnette B
    Can J Anaesth; 1993 Apr; 40(4):298-307. PubMed ID: 8485788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral pressure-flow velocity relationship during hypothermic cardiopulmonary bypass in neonates and infants.
    Taylor RH; Burrows FA; Bissonnette B
    Anesth Analg; 1992 May; 74(5):636-42. PubMed ID: 1567028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent low cerebral blood flow velocity following profound hypothermic circulatory arrest in infants.
    O'Hare B; Bissonnette B; Bohn D; Cox P; Williams W
    Can J Anaesth; 1995 Nov; 42(11):964-71. PubMed ID: 8590505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing the change in cerebral hemodynamics in pediatric patients during and after corrective cardiac surgery of congenital heart diseases by means of full-flow cardiopulmonary bypass.
    Abdul-Khaliq H; Uhlig R; Böttcher W; Ewert P; Alexi-Meskishvili V; Lange PE
    Perfusion; 2002 May; 17(3):179-85. PubMed ID: 12017385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial Doppler blood flow velocity versus 133Xe clearance cerebral blood flow during mild hypothermic cardiopulmonary bypass.
    Grocott HP; Amory DW; Lowry E; Croughwell ND; Newman MF
    J Clin Monit Comput; 1998 Jan; 14(1):35-9. PubMed ID: 9641854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The limits of detectable cerebral perfusion by transcranial Doppler sonography in neonates undergoing deep hypothermic low-flow cardiopulmonary bypass.
    Zimmerman AA; Burrows FA; Jonas RA; Hickey PR
    J Thorac Cardiovasc Surg; 1997 Oct; 114(4):594-600. PubMed ID: 9338645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcranial Doppler sonography and cerebral blood flow during cardiopulmonary bypass.
    Nuttall GA; Cook DJ
    Ann Thorac Surg; 1997 Sep; 64(3):891-2. PubMed ID: 9307515
    [No Abstract]   [Full Text] [Related]  

  • 10. Minimum hematocrit at differing cardiopulmonary bypass temperatures in dogs.
    Cook DJ; Orszulak TA; Daly RC
    Circulation; 1998 Nov; 98(19 Suppl):II170-4; discussion II175. PubMed ID: 9852900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile flow improves cerebral blood flow in pediatric cardiopulmonary bypass.
    Wang W; Bai SY; Zhang HB; Bai J; Zhang SJ; Zhu DM
    Artif Organs; 2010 Nov; 34(11):874-8. PubMed ID: 21092029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the effect of altering hematocrit and temperature on blood viscosity.
    Stammers AH; Vang SN; Mejak BL; Rauch ED
    J Extra Corpor Technol; 2003 Jun; 35(2):143-51. PubMed ID: 12939024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction.
    Andropoulos DB; Stayer SA; McKenzie ED; Fraser CD
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):491-9. PubMed ID: 12658190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preservation of static and dynamic cerebral autoregulation after mild hypothermic cardiopulmonary bypass.
    Preisman S; Marks R; Nahtomi-Shick O; Sidi A
    Br J Anaesth; 2005 Aug; 95(2):207-11. PubMed ID: 15863439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Middle cerebral artery flow velocity during coronary surgery; influence of clinical variables.
    van der Linden JA; von Ahn H; Ekroth R; Tydén H
    J Clin Anesth; 1990; 2(1):7-15. PubMed ID: 2138021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The influence of aging on cerebral blood flow and oxygen metabolism during moderate hypothermic cardiopulmonary bypass--a clinical study by means of transcranial Doppler ultrasound].
    Kamihira S; Honda T; Tonomoto N; Suzuki Y; Ishiguro S; Kuroda H; Sasaki S; Mori T
    Nihon Kyobu Geka Gakkai Zasshi; 1994 Aug; 42(8):1163-70. PubMed ID: 7963830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher hematocrit improves liver blood flow and metabolism during cardiopulmonary bypass in piglets.
    Nollert G; Sperling J; Sakamoto T; Jaeger BR; Jonas RA
    Thorac Cardiovasc Surg; 2001 Aug; 49(4):226-30. PubMed ID: 11505319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraoperative trans-fontanellar cerebral ultrasonography in infants during cardiac surgery under cardiopulmonary bypass: an observational study.
    Park YH; Song IK; Lee JH; Kim HS; Kim CS; Kim JT
    J Clin Monit Comput; 2017 Feb; 31(1):159-165. PubMed ID: 26691513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcranial Doppler-estimated versus thermodilution-estimated cerebral blood flow during cardiac operations. Influence of temperature and arterial carbon dioxide tension.
    van der Linden J; Wesslén O; Ekroth R; Tydén H; von Ahn H
    J Thorac Cardiovasc Surg; 1991 Jul; 102(1):95-102. PubMed ID: 1906562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.