These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11878985)

  • 1. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures.
    Stoeva S; Klabunde KJ; Sorensen CM; Dragieva I
    J Am Chem Soc; 2002 Mar; 124(10):2305-11. PubMed ID: 11878985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation.
    Smetana AB; Klabunde KJ; Sorensen CM
    J Colloid Interface Sci; 2005 Apr; 284(2):521-6. PubMed ID: 15780291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly monodisperse colloidal magnesium nanoparticles by room temperature digestive ripening.
    Kalidindi SB; Jagirdar BR
    Inorg Chem; 2009 May; 48(10):4524-9. PubMed ID: 19341306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse Gold Cuboctahedral Nanocrystals Directly Synthesized in Reverse Micelles: Preparation, Colloidal Dispersion in Organic Solvents and Water, Reversible Self-Assembly and Plasmonic Properties.
    Luna C; Castañeda-Rodríguez D; Barriga-Castro ED; Núñez NO; Mendoza-Reséndez R
    Langmuir; 2019 Nov; 35(44):14291-14299. PubMed ID: 31565937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facile chemical route to semiconductor metal sulfide nanocrystal superlattices.
    Liu Z; Liang J; Xu D; Lu J; Qian Y
    Chem Commun (Camb); 2004 Dec; (23):2724-5. PubMed ID: 15568086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monodisperse Ag, Au Nanoparticles via Solvated Metal Atom Dispersion and Digestive Ripening in Ionic Liquid.
    Sarkar S; Jagirdar BR
    Langmuir; 2024 Apr; 40(14):7620-7631. PubMed ID: 38526315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of indium nanoparticles: digestive ripening under mild conditions.
    Cingarapu S; Yang Z; Sorensen CM; Klabunde KJ
    Inorg Chem; 2011 Jun; 50(11):5000-5. PubMed ID: 21520906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening.
    Smetana AB; Klabunde KJ; Sorensen CM; Ponce AA; Mwale B
    J Phys Chem B; 2006 Feb; 110(5):2155-8. PubMed ID: 16471798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly.
    Martin MN; Basham JI; Chando P; Eah SK
    Langmuir; 2010 May; 26(10):7410-7. PubMed ID: 20392108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties.
    Polavarapu L; Xu QH
    Nanotechnology; 2009 May; 20(18):185606. PubMed ID: 19420622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnesium/copper nanocomposite through digestive ripening.
    Kalidindi SB; Jagirdar BR
    Chem Asian J; 2009 Jun; 4(6):835-838. PubMed ID: 19330878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of hydrogen upon exposure of thiol to gold clusters at low temperature.
    Matthiesen JE; Jose D; Sorensen CM; Klabunde KJ
    J Am Chem Soc; 2012 Jun; 134(22):9376-9. PubMed ID: 22568829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-Solvent Compatibility: The Unsung Hero in the Digestive Ripening Story.
    Shimpi JR; Chaudhari VR; Prasad BLV
    Langmuir; 2018 Nov; 34(45):13680-13689. PubMed ID: 30346777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of gold nanoparticles and polystyrene: a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae.
    Tian J; Jin J; Zheng F; Zhao H
    Langmuir; 2010 Jun; 26(11):8762-8. PubMed ID: 20085341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time and temperature effects on the digestive ripening of gold nanoparticles: is there a crossover from digestive ripening to Ostwald ripening?
    Sahu P; Prasad BL
    Langmuir; 2014 Sep; 30(34):10143-50. PubMed ID: 25111614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-digestive ripening assisted phase-controlled synthesis of Ag-Sn intermetallic nanoparticles and their dye degradation activity.
    Bhatia G; Jagirdar BR
    Dalton Trans; 2022 Aug; 51(32):12147-12160. PubMed ID: 35876754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of monodisperse spherical nanocrystals.
    Park J; Joo J; Kwon SG; Jang Y; Hyeon T
    Angew Chem Int Ed Engl; 2007; 46(25):4630-60. PubMed ID: 17525914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From (Au5Sn + AuSn) physical mixture to phase pure AuSn and Au5Sn intermetallic nanocrystals with tailored morphology: digestive ripening assisted approach.
    Arora N; Jagirdar BR
    Phys Chem Chem Phys; 2014 Jun; 16(23):11381-9. PubMed ID: 24797383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-large-scale syntheses of monodisperse nanocrystals.
    Park J; An K; Hwang Y; Park JG; Noh HJ; Kim JY; Park JH; Hwang NM; Hyeon T
    Nat Mater; 2004 Dec; 3(12):891-5. PubMed ID: 15568032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkyl and Aromatic Amines as Digestive Ripening/Size Focusing Agents for Gold Nanoparticles.
    Sun Y; Jose D; Sorensen C; Klabunde KJ
    Nanomaterials (Basel); 2013 Jul; 3(3):370-392. PubMed ID: 28348341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.