BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11879020)

  • 1. Zinc transformations in acidic soil and zinc efficiency on maize by adding six organic zinc complexes.
    López-Valdivia LM; Fernández MD; Obrador A; Alvarez JM
    J Agric Food Chem; 2002 Mar; 50(6):1455-60. PubMed ID: 11879020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc transformations in neutral soil and zinc efficiency in maize fertilization.
    Alvarez JM; Gonzalez D
    J Agric Food Chem; 2006 Dec; 54(25):9488-95. PubMed ID: 17147437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of zinc complexes on the distribution of zinc in calcareous soil and zinc uptake by maize.
    Alvarez JM; Rico MI
    J Agric Food Chem; 2003 Sep; 51(19):5760-7. PubMed ID: 12952430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobility and leachability of zinc in two soils treated with six organic zinc complexes.
    Alvarez JM; Novillo J; Obrador A; López-Valdivia LM
    J Agric Food Chem; 2001 Aug; 49(8):3833-40. PubMed ID: 11513675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of a NPK fertilizer with adhered zinc lignosulfonate as a zinc source for maize (Zea mays L.).
    Martín-Ortiz D; Hernández-Apaolaza L; Gárate A
    J Agric Food Chem; 2009 Oct; 57(19):9071-8. PubMed ID: 19761209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of soil type on the mobility and bioavailability of chelated zinc.
    Alvarez JM
    J Agric Food Chem; 2007 May; 55(9):3568-76. PubMed ID: 17407310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaching and efficiency of six organic zinc fertilizers applied to navy bean crop grown in a weakly acidic soil of Spain.
    Gonzalez D; Novillo J; Rico MI; Alvarez JM
    J Agric Food Chem; 2008 May; 56(9):3214-21. PubMed ID: 18402454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biological availability of zinc lignosulfonate on calcareous soil of north Guoangdong Province].
    Wang D; Lin H; Peng J; Xiao X; Liao Z
    Ying Yong Sheng Tai Xue Bao; 2004 Jul; 15(7):1236-40. PubMed ID: 15506106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of a zinc lignosulfonate as Zn source for wheat (Triticum aestivum L.) and corn (Zea mays L.) under hydroponic culture conditions.
    Martín-Ortiz D; Hernández-Apaolaza L; Gárate A
    J Agric Food Chem; 2009 Jan; 57(1):226-31. PubMed ID: 19063638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavior of zinc from six organic fertilizers applied to a navy bean crop grown in a calcareous soil.
    Gonzalez D; Obrador A; Alvarez JM
    J Agric Food Chem; 2007 Aug; 55(17):7084-92. PubMed ID: 17663567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study.
    Li H; Wang Q; Cui Y; Dong Y; Christie P
    Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of returning maize straw into field on the Zn forms and their availability in a calcareous soil].
    Cui J; Tian XH; Lu XC; Ren SC; Dai EZ
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3221-6. PubMed ID: 22384590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of ZnSO4 or Zn-EDTA fertilizer to a calcareous soil: Zn diffusion in soil and its uptake by wheat plants.
    Zhao AQ; Tian XH; Chen YL; Li S
    J Sci Food Agric; 2016 Mar; 96(5):1484-91. PubMed ID: 25951009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wheat (Triticum aestivum L.) response to a zinc fertilizer applied as zinc lignosulfonate adhered to a NPK fertilizer.
    Martín-Ortiz D; Hernández-Apaolaza L; Gárate A
    J Agric Food Chem; 2010 Jul; 58(13):7886-92. PubMed ID: 20527916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phyto-availability and speciation change of heavy metals in soils amended with lignin as micro-fertilizer.
    Wang S; Zhang S; Shan X; Mu H
    Sci China C Life Sci; 2005 May; 48 Suppl 1():142-9. PubMed ID: 16089340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chelant-assisted phytoextraction and accumulation of Zn by Zea mays.
    Gheju M; Stelescu I
    J Environ Manage; 2013 Oct; 128():631-6. PubMed ID: 23845956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of 67Zn distribution in navy bean (Phaseolus vulgaris L.) after foliar application of 67Zn-lignosulfonates using isotope pattern deconvolution.
    Benedicto A; Hernández-Apaolaza L; Rivas I; Lucena JJ
    J Agric Food Chem; 2011 Aug; 59(16):8829-38. PubMed ID: 21732694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum Olsen Phosphorus/Zinc
    Sacristán D; González-Guzmán A; Torrent J; Del Campillo MC
    J Sci Food Agric; 2021 May; 101(7):3056-3064. PubMed ID: 33215712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.
    Lambert R; Grant C; Sauvé S
    Sci Total Environ; 2007 Jun; 378(3):293-305. PubMed ID: 17400282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.