These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 11879048)
1. Yeast-induced inhibition of (+)-catechin and (-)-epicatechin degradation in model solutions. Lopez-Toledano A; Mayen M; Merida J; Medina M J Agric Food Chem; 2002 Mar; 50(6):1631-5. PubMed ID: 11879048 [TBL] [Abstract][Full Text] [Related]
2. Retention of browning compounds by yeasts involved in the winemaking of sherry type wines. Merida J; Lopez-Toledano A; Marquez T; Millan C; Ortega JM; Medina M Biotechnol Lett; 2005 Oct; 27(20):1565-70. PubMed ID: 16245175 [TBL] [Abstract][Full Text] [Related]
3. Interaction of yeasts with the products resulting from the condensation reaction between (+)-catechin and acetaldehyde. Lopez-Toledano A; Villaño-Valencia D; Mayen M; Merida J; Medina M J Agric Food Chem; 2004 Apr; 52(8):2376-81. PubMed ID: 15080649 [TBL] [Abstract][Full Text] [Related]
4. Phenolic compounds and browning in sherry wines subjected to oxidative and biological aging. Fabios M; Lopez-Toledano A; Mayen M; Merida J; Medina M J Agric Food Chem; 2000 Jun; 48(6):2155-9. PubMed ID: 10888514 [TBL] [Abstract][Full Text] [Related]
5. Yeasts used as fining treatment to correct browning in white wines. Bonilla F; Mayen M; Merida J; Medina M J Agric Food Chem; 2001 Apr; 49(4):1928-33. PubMed ID: 11308348 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of phenolic compounds and browning products in white wines by yeasts and their cell walls. Razmkhab S; Lopez-Toledano A; Ortega JM; Mayen M; Merida J; Medina M J Agric Food Chem; 2002 Dec; 50(25):7432-7. PubMed ID: 12452671 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of chitosan in inhibiting the oxidation of (+)-catechin in white wine model solutions. Chinnici F; Natali N; Riponi C J Agric Food Chem; 2014 Oct; 62(40):9868-75. PubMed ID: 25234009 [TBL] [Abstract][Full Text] [Related]
8. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism. Alexandre H Int J Food Microbiol; 2013 Oct; 167(2):269-75. PubMed ID: 24141073 [TBL] [Abstract][Full Text] [Related]
9. Delaying effect of a wine Lactobacillus plantarum strain on the coloration and xanthylium pigment formation occurring in (+)-catechin and (-)-epicatechin wine model solutions. Curiel JA; Muñoz R; López de Felipe F J Agric Food Chem; 2010 Nov; 58(21):11318-24. PubMed ID: 20925383 [TBL] [Abstract][Full Text] [Related]
10. Browning in ethanolic solutions of ascorbic acid and catechin. Chuang PT; Shen SC; Wu JS J Agric Food Chem; 2011 Jul; 59(14):7818-24. PubMed ID: 21668002 [TBL] [Abstract][Full Text] [Related]
11. Biological aging of sherry wines using pure cultures of two flor yeast strains under controlled microaeration. Muñoz D; Peinado RA; Medina M; Moreno J J Agric Food Chem; 2005 Jun; 53(13):5258-64. PubMed ID: 15969505 [TBL] [Abstract][Full Text] [Related]
12. Effect of different yeast strains and their culture conditions on the prevention of wine model solution browning by yeast lees. Márquez T; Millán C; Souquet JM; Salmon JM J Agric Food Chem; 2009 May; 57(9):3771-9. PubMed ID: 19326869 [TBL] [Abstract][Full Text] [Related]
13. Impact of fluorescent lighting on the browning potential of model wine solutions containing organic acids and iron. Grant-Preece P; Barril C; Schmidtke LM; Clark AC Food Chem; 2018 Mar; 243():239-248. PubMed ID: 29146334 [TBL] [Abstract][Full Text] [Related]
14. Effect of lysozyme on "flor" velum yeasts in the biological aging of sherry wines. Roldán A; Lasanta C; Caro I; Palacios V Food Microbiol; 2012 May; 30(1):245-52. PubMed ID: 22265308 [TBL] [Abstract][Full Text] [Related]
15. Isomeric influence on the oxidative coloration of phenolic compounds in a model white wine: comparison of (+)-catechin and (-)-epicatechin. Labrouche F; Clark AC; Prenzler PD; Scollary GR J Agric Food Chem; 2005 Dec; 53(26):9993-8. PubMed ID: 16366685 [TBL] [Abstract][Full Text] [Related]
16. Yeast population dynamics during the fermentation and biological aging of sherry wines. Esteve-Zarzoso B; Peris-Torán MJ; García-Maiquez E; Uruburu F; Querol A Appl Environ Microbiol; 2001 May; 67(5):2056-61. PubMed ID: 11319081 [TBL] [Abstract][Full Text] [Related]
17. Influence of procyanidins on the color stability of oenin solutions. Malien-Aubert C; Dangles O; Amiot MJ J Agric Food Chem; 2002 May; 50(11):3299-305. PubMed ID: 12010001 [TBL] [Abstract][Full Text] [Related]
18. Oxidative behavior of (+)-catechin in the presence of inactive dry yeasts: a comparison with sulfur dioxide, ascorbic acid and glutathione. Comuzzo P; Toniolo R; Battistutta F; Lizee M; Svigelj R; Zironi R J Sci Food Agric; 2017 Dec; 97(15):5158-5167. PubMed ID: 28436036 [TBL] [Abstract][Full Text] [Related]
19. Influence of different phenolic copigments on the color of malvidin 3-glucoside. Gómez-Míguez M; González-Manzano S; Escribano-Bailón MT; Heredia FJ; Santos-Buelga C J Agric Food Chem; 2006 Jul; 54(15):5422-9. PubMed ID: 16848527 [TBL] [Abstract][Full Text] [Related]
20. Influence of aeration on the physiological activity of flor yeasts. Berlanga TM; Atanasio C; Mauricio JC; Ortega JM J Agric Food Chem; 2001 Jul; 49(7):3378-84. PubMed ID: 11453778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]