These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11879748)

  • 21. Evaluation of a novel cellulose powder as a filler-binder for direct compression of tablets.
    Pesonen T; Paronen P; Puurunen T
    Pharm Weekbl Sci; 1989 Feb; 11(1):13-9. PubMed ID: 2710639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Study of mixed dry binders in directly compressible lactoses and microcrystalline cellulose].
    Muzíková J; Vinklarová S
    Ceska Slov Farm; 2004 Sep; 53(5):264-7. PubMed ID: 15506713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative evaluation of silicified microcrystalline cellulose II as a direct compression vehicle.
    Rojas J; Kumar V
    Int J Pharm; 2011 Sep; 416(1):120-8. PubMed ID: 21708237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile.
    Hosseini A; Körber M; Bodmeier R
    Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the die compaction of powders used in pharmaceutics.
    Aryanpour G; Farzaneh M
    Pharm Dev Technol; 2018 Jul; 23(6):628-635. PubMed ID: 28631521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression.
    Nakamura S; Tanaka C; Yuasa H; Sakamoto T
    AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A STUDY OF COMPRESSION PROCESS AND PROPERTIES OF TABLETS WITH MICROCRYSTALLINE CELLULOSE AND COLLOIDAL SILICON DIOXIDE.
    Muzikova J; Louzenska M; Pekarek T
    Acta Pol Pharm; 2016 Sep; 73(5):1259-1265. PubMed ID: 29638066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tensile strength and disintegration of tableted silicified microcrystalline cellulose: influences of interparticle bonding.
    Kachrimanis K; Nikolakakis I; Malamataris S
    J Pharm Sci; 2003 Jul; 92(7):1489-501. PubMed ID: 12820153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of concentration and type of microcrystalline cellulose on the physical properties of tablets containing Cornelian cherry fruits.
    Franc A; Kurhajec S; Pavloková S; Sabadková D; Muselík J
    Acta Pharm; 2017 Jun; 67(2):187-202. PubMed ID: 28590906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.
    Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA
    Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterisation of the interactive properties of microcrystalline cellulose-carboxymethyl cellulose hydrogels.
    Zhao GH; Kapur N; Carlin B; Selinger E; Guthrie JT
    Int J Pharm; 2011 Aug; 415(1-2):95-101. PubMed ID: 21645595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of non-crystalline cellulose as a novel excipient in solid dose products.
    Pawar K; Render D; Rangari V; Lee Y; Babu RJ
    Drug Dev Ind Pharm; 2018 Sep; 44(9):1512-1519. PubMed ID: 29734848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation and Comparison of Three Types of Spray Dried Coprocessed Excipient Avicel® for Direct Compression.
    Vodáčková P; Vraníková B; Svačinová P; Franc A; Elbl J; Muselík J; Kubalák R; Solný T
    Biomed Res Int; 2018; 2018():2739428. PubMed ID: 29850496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Preparation and evaluation of taste masked orally disintegrating tablets with granules made by the wet granulation method].
    Kawano Y; Ito A; Sasatsu M; Machida Y; Onishi H
    Yakugaku Zasshi; 2010 Dec; 130(12):1737-42. PubMed ID: 21139401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of chitosan as a disintegrant on the bioavailability of furosemide tablets: in vitro evaluation and in vivo simulation of novel formulations.
    Rasool BK; Fahmy SA; Galeel OW
    Pak J Pharm Sci; 2012 Oct; 25(4):815-22. PubMed ID: 23009999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of compressional force on the crystallinity of directly compressible cellulose excipients.
    Kumar V; Kothari SH
    Int J Pharm; 1999 Jan; 177(2):173-82. PubMed ID: 10205612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of orally disintegrating tablets with taste-masking function: masking effect in granules prepared with correctives using the dry granulation method and evaluation of tablets prepared using the taste-masked granules.
    Kawano Y; Ito A; Sasatsu M; Machida Y
    Yakugaku Zasshi; 2010 Jan; 130(1):81-6. PubMed ID: 20046070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization.
    Shlieout G; Arnold K; Müller G
    AAPS PharmSciTech; 2002; 3(2):E11. PubMed ID: 12916948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preformulation: effect of moisture content on microcrystalline cellulose (Avicel PH-302) and its consequences on packing performances.
    Nicolas V; Chambin O; Andrès C; Rochat-Gonthier MH; Pourcelot Y
    Drug Dev Ind Pharm; 1999 Oct; 25(10):1137-42. PubMed ID: 10529895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.