These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 11880171)
1. From the sequence to the superstructural properties of DNAs. Anselmi C; De Santis P; Paparcone R; Savino M; Scipioni A Biophys Chem; 2002 Jan; 95(1):23-47. PubMed ID: 11880171 [TBL] [Abstract][Full Text] [Related]
2. A theoretical model for the prediction of sequence-dependent nucleosome thermodynamic stability. Anselmi C; Bocchinfuso G; De Santis P; Savino M; Scipioni A Biophys J; 2000 Aug; 79(2):601-13. PubMed ID: 10919995 [TBL] [Abstract][Full Text] [Related]
3. Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. Anselmi C; Bocchinfuso G; De Santis P; Savino M; Scipioni A J Mol Biol; 1999 Mar; 286(5):1293-301. PubMed ID: 10064697 [TBL] [Abstract][Full Text] [Related]
4. The main role of the sequence-dependent DNA elasticity in determining the free energy of nucleosome formation on telomeric DNAs. Filesi I; Cacchione S; De Santis P; Rossetti L; Savino M Biophys Chem; 2000 Jan; 83(3):223-37. PubMed ID: 10647852 [TBL] [Abstract][Full Text] [Related]
5. A statistical thermodynamic model applied to experimental AFM population and location data is able to quantify DNA-histone binding strength and internucleosomal interaction differences between acetylated and unacetylated nucleosomal arrays. Solis FJ; Bash R; Yodh J; Lindsay SM; Lohr D Biophys J; 2004 Nov; 87(5):3372-87. PubMed ID: 15347582 [TBL] [Abstract][Full Text] [Related]
6. Nucleosome organization on Kluyveromyces lactis centromeric DNAs. Mattei S; Sampaolese B; De Santis P; Savino M Biophys Chem; 2002 Jun; 97(2-3):173-87. PubMed ID: 12050008 [TBL] [Abstract][Full Text] [Related]
7. DNA superstructural features and nucleosomal organization of the two centromeres of Kluyveromyces lactis chromosome 1 and Saccharomyces cerevisiae chromosome 6. Del CornĂ² M; De Santis P; Sampaolese B; Savino M FEBS Lett; 1998 Jul; 431(1):66-70. PubMed ID: 9684867 [TBL] [Abstract][Full Text] [Related]
8. Sequence-dependent collective properties of DNAs and their role in biological systems. De Santis P; Scipioni A Phys Life Rev; 2013 Mar; 10(1):41-67. PubMed ID: 23375126 [TBL] [Abstract][Full Text] [Related]
9. A deformation energy-based model for predicting nucleosome dyads and occupancy. Liu G; Xing Y; Zhao H; Wang J; Shang Y; Cai L Sci Rep; 2016 Apr; 6():24133. PubMed ID: 27053067 [TBL] [Abstract][Full Text] [Related]
10. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations? Svozil D; Hobza P; Sponer J J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic, spectroscopic, and equilibrium binding studies of DNA sequence context effects in four 40 base pair deoxyoligonucleotides. Vallone PM; Benight AS Biochemistry; 2000 Jul; 39(26):7835-46. PubMed ID: 10869190 [TBL] [Abstract][Full Text] [Related]
12. DNA flexibility on short length scales probed by atomic force microscopy. Mazur AK; Maaloum M Phys Rev Lett; 2014 Feb; 112(6):068104. PubMed ID: 24580711 [TBL] [Abstract][Full Text] [Related]
13. Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability. Vallone PM; Paner TM; Hilario J; Lane MJ; Faldasz BD; Benight AS Biopolymers; 1999 Oct; 50(4):425-42. PubMed ID: 10423551 [TBL] [Abstract][Full Text] [Related]
14. Sequence-dependent DNA curvature and flexibility from scanning force microscopy images. Scipioni A; Anselmi C; Zuccheri G; Samori B; De Santis P Biophys J; 2002 Nov; 83(5):2408-18. PubMed ID: 12414677 [TBL] [Abstract][Full Text] [Related]
15. High flexibility of DNA on short length scales probed by atomic force microscopy. Wiggins PA; van der Heijden T; Moreno-Herrero F; Spakowitz A; Phillips R; Widom J; Dekker C; Nelson PC Nat Nanotechnol; 2006 Nov; 1(2):137-41. PubMed ID: 18654166 [TBL] [Abstract][Full Text] [Related]
16. Prediction of nucleosome positioning in genomes: limits and perspectives of physical and bioinformatic approaches. De Santis P; Morosetti S; Scipioni A J Biomol Struct Dyn; 2010 Jun; 27(6):747-64. PubMed ID: 20232931 [TBL] [Abstract][Full Text] [Related]
17. The influence of DNA stiffness upon nucleosome formation. Virstedt J; Berge T; Henderson RM; Waring MJ; Travers AA J Struct Biol; 2004 Oct; 148(1):66-85. PubMed ID: 15363788 [TBL] [Abstract][Full Text] [Related]
18. Elastic Energy Partitioning in DNA Deformation and Binding to Proteins. Teng X; Hwang W ACS Nano; 2016 Jan; 10(1):170-80. PubMed ID: 26638896 [TBL] [Abstract][Full Text] [Related]
20. Chromatin reconstitution on small DNA rings. V. DNA thermal flexibility of single nucleosomes. Hamiche A; Prunell A J Mol Biol; 1992 Nov; 228(2):327-37. PubMed ID: 1453443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]