BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 11880383)

  • 21. Overexpression of tnaC of Escherichia coli inhibits growth by depleting tRNA2Pro availability.
    Gong M; Gong F; Yanofsky C
    J Bacteriol; 2006 Mar; 188(5):1892-8. PubMed ID: 16484200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center.
    Cruz-Vera LR; New A; Squires C; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3140-6. PubMed ID: 17293420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The regulatory TnaC nascent peptide preferentially inhibits release factor 2-mediated hydrolysis of peptidyl-tRNA.
    Emmanuel JS; Sengupta A; Gordon ER; Noble JT; Cruz-Vera LR
    J Biol Chem; 2019 Dec; 294(50):19224-19235. PubMed ID: 31712310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rho-dependent transcription termination in the tryptophanase operon leader region of Escherichia coli K-12.
    Stewart V; Landick R; Yanofsky C
    J Bacteriol; 1986 Apr; 166(1):217-23. PubMed ID: 2420781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Tryptophan-Induced
    Sherman MW; Sandeep S; Contreras LM
    ACS Synth Biol; 2021 May; 10(5):1024-1038. PubMed ID: 33835775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tryptophan inhibits Proteus vulgaris TnaC leader peptide elongation, activating tna operon expression.
    Cruz-Vera LR; Yang R; Yanofsky C
    J Bacteriol; 2009 Nov; 191(22):7001-6. PubMed ID: 19767424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis for the tryptophan sensitivity of TnaC-mediated ribosome stalling.
    van der Stel AX; Gordon ER; Sengupta A; Martínez AK; Klepacki D; Perry TN; Herrero Del Valle A; Vázquez-Laslop N; Sachs MS; Cruz-Vera LR; Innis CA
    Nat Commun; 2021 Sep; 12(1):5340. PubMed ID: 34504068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A transcriptional pause synchronizes translation with transcription in the tryptophanase operon leader region.
    Gong F; Yanofsky C
    J Bacteriol; 2003 Nov; 185(21):6472-6. PubMed ID: 14563884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two different mechanisms for urea action at the LAC and TNA operons in Escherichia coli.
    Blazy B; Ullmann A
    Mol Gen Genet; 1990 Feb; 220(3):419-24. PubMed ID: 2160052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The attenuator of the tryptophan operon in E.coli: rho-mediated release of RNA polymerase from a transcription termination complex in vitro.
    Fuller RS; Platt T
    Nucleic Acids Res; 1978 Dec; 5(12):4613-23. PubMed ID: 370776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bicyclomycin sensitivity and resistance affect Rho factor-mediated transcription termination in the tna operon of Escherichia coli.
    Yanofsky C; Horn V
    J Bacteriol; 1995 Aug; 177(15):4451-6. PubMed ID: 7543478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli.
    Qayyum MZ; Dey D; Sen R
    J Biol Chem; 2016 Apr; 291(15):8090-108. PubMed ID: 26872975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli.
    Yanofsky C; Horn V; Gollnick P
    J Bacteriol; 1991 Oct; 173(19):6009-17. PubMed ID: 1917834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of leader peptide synthesis in tryptophanase operon expression in Escherichia coli K-12.
    Stewart V; Yanofsky C
    J Bacteriol; 1986 Jul; 167(1):383-6. PubMed ID: 3522554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10.
    Nodwell JR; Greenblatt J
    Cell; 1993 Jan; 72(2):261-8. PubMed ID: 7678781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural insight into nascent polypeptide chain-mediated translational stalling.
    Seidelt B; Innis CA; Wilson DN; Gartmann M; Armache JP; Villa E; Trabuco LG; Becker T; Mielke T; Schulten K; Steitz TA; Beckmann R
    Science; 2009 Dec; 326(5958):1412-5. PubMed ID: 19933110
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular basis for the ribosome functioning as an L-tryptophan sensor.
    Bischoff L; Berninghausen O; Beckmann R
    Cell Rep; 2014 Oct; 9(2):469-75. PubMed ID: 25310980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan.
    Martínez AK; Gordon E; Sengupta A; Shirole N; Klepacki D; Martinez-Garriga B; Brown LM; Benedik MJ; Yanofsky C; Mankin AS; Vazquez-Laslop N; Sachs MS; Cruz-Vera LR
    Nucleic Acids Res; 2014 Jan; 42(2):1245-56. PubMed ID: 24137004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis of l-tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide.
    Su T; Kudva R; Becker T; Buschauer R; Komar T; Berninghausen O; von Heijne G; Cheng J; Beckmann R
    Nucleic Acids Res; 2021 Sep; 49(16):9539-9547. PubMed ID: 34403461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of the Bacillus subtilis trpEDCFBA operon is influenced by translational coupling and Rho termination factor.
    Yakhnin H; Babiarz JE; Yakhnin AV; Babitzke P
    J Bacteriol; 2001 Oct; 183(20):5918-26. PubMed ID: 11566991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.