BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 11880509)

  • 1. Extended plasticity of visual cortex in dark-reared animals may result from prolonged expression of cpg15-like genes.
    Lee WC; Nedivi E
    J Neurosci; 2002 Mar; 22(5):1807-15. PubMed ID: 11880509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic regulation of cpg15 during activity-dependent synaptic development in the mammalian visual system.
    Corriveau RA; Shatz CJ; Nedivi E
    J Neurosci; 1999 Sep; 19(18):7999-8008. PubMed ID: 10479700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study of CPG15 expression in the visual cortex of normal and monocular form deprived development rats].
    Chen X; Chen J; Tian CH; Lin JY; Wang YC
    Zhonghua Yan Ke Za Zhi; 2010 Nov; 46(11):978-83. PubMed ID: 21211292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark rearing blocks the developmental down-regulation of brain-derived neurotrophic factor messenger RNA expression in layers IV and V of the rat visual cortex.
    Capsoni S; Tongiorgi E; Cattaneo A; Domenici L
    Neuroscience; 1999 Jan; 88(2):393-403. PubMed ID: 10197762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.
    Mower GD; Caplan CJ; Christen WG; Duffy FH
    J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Munc13-3 as a candidate gene for critical-period neuroplasticity in visual cortex.
    Yang CB; Zheng YT; Li GY; Mower GD
    J Neurosci; 2002 Oct; 22(19):8614-8. PubMed ID: 12351735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity.
    Di Cristo G; Chattopadhyaya B; Kuhlman SJ; Fu Y; BĂ©langer MC; Wu CZ; Rutishauser U; Maffei L; Huang ZJ
    Nat Neurosci; 2007 Dec; 10(12):1569-77. PubMed ID: 18026099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional regulation of Munc13-3 protein expression by age and dark rearing during the critical period in mouse visual cortex.
    Yang CB; Kiser PJ; Zheng YT; Varoqueaux F; Mower GD
    Neuroscience; 2007 Dec; 150(3):603-8. PubMed ID: 17997229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effect of dark rearing on long-term potentiation induced by layer IV and white matter stimulation in rat visual cortex.
    Salami M; Fathollahi Y; Semnanian S; Atapour N
    Neurosci Res; 2000 Dec; 38(4):349-56. PubMed ID: 11164561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation.
    Lein ES; Shatz CJ
    J Neurosci; 2000 Feb; 20(4):1470-83. PubMed ID: 10662837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of light/dark- and dark-rearing on synaptic morphology in the superior colliculus and visual cortex of the postnatal and adult rat.
    Bakkum BW; Benevento LA; Cohen RS
    J Neurosci Res; 1991 Jan; 28(1):65-80. PubMed ID: 2041057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged sensitivity to monocular deprivation in dark-reared cats: effects of age and visual exposure.
    Cynader M
    Brain Res; 1983 Jun; 284(2-3):155-64. PubMed ID: 6871721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual experience regulates Kv3.1b and Kv3.2 expression in developing rat visual cortex.
    Grabert J; Wahle P
    Neuroscience; 2009 Jan; 158(2):654-64. PubMed ID: 18708127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of disabled-1 as a candidate gene for critical period neuroplasticity in cat and mouse visual cortex.
    Yang CB; Zheng YT; Kiser PJ; Mower GD
    Eur J Neurosci; 2006 May; 23(10):2804-8. PubMed ID: 16817883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mismatch between BDNF mRNA and protein expression in the developing visual cortex: the role of visual experience.
    Tropea D; Capsoni S; Tongiorgi E; Giannotta S; Cattaneo A; Domenici L
    Eur J Neurosci; 2001 Feb; 13(4):709-21. PubMed ID: 11207806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of visual experience on tubulin synthesis during a critical period of visual cortex development in the hooded rat.
    Cronly-Dillon J; Perry GW
    J Physiol; 1979 Aug; 293():469-84. PubMed ID: 501620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in the expression of NMDA receptor subunits (NR1, NR2A, NR2B) in the cat visual cortex and the effects of dark rearing.
    Chen L; Cooper NG; Mower GD
    Brain Res Mol Brain Res; 2000 May; 78(1-2):196-200. PubMed ID: 10891601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.