These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 11880579)

  • 1. Progress in breeding for trace minerals in staple crops.
    Gregorio GB
    J Nutr; 2002 Mar; 132(3):500S-502S. PubMed ID: 11880579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally.
    Welch RM
    J Nutr; 2002 Mar; 132(3):495S-499S. PubMed ID: 11880578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in breeding low phytate crops.
    Raboy V
    J Nutr; 2002 Mar; 132(3):503S-505S. PubMed ID: 11880580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofortification of essential nutritional compounds and trace elements in rice and cassava.
    Sautter C; Poletti S; Zhang P; Gruissem W
    Proc Nutr Soc; 2006 May; 65(2):153-9. PubMed ID: 16672076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The assessment of soil availability and wheat grain status of zinc and iron in Serbia: Implications for human nutrition.
    Nikolic M; Nikolic N; Kostic L; Pavlovic J; Bosnic P; Stevic N; Savic J; Hristov N
    Sci Total Environ; 2016 May; 553():141-148. PubMed ID: 26925726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods.
    Sands DC; Morris CE; Dratz EA; Pilgeram A
    Plant Sci; 2009 Nov; 177(5):377-89. PubMed ID: 20467463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status.
    Hotz C; McClafferty B
    Food Nutr Bull; 2007 Jun; 28(2 Suppl):S271-9. PubMed ID: 17658073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic inheritance of pulp colour and selected traits of cassava (Manihot esculenta Crantz) at early generation selection.
    Nduwumuremyi A; Melis R; Shanahan P; Theodore A
    J Sci Food Agric; 2018 Jun; 98(8):3190-3197. PubMed ID: 29230819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost?
    Bouis HE
    Proc Nutr Soc; 2003 May; 62(2):403-11. PubMed ID: 14506888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition.
    Ashokkumar K; Govindaraj M; Karthikeyan A; Shobhana VG; Warkentin TD
    Front Genet; 2020; 11():414. PubMed ID: 32547594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing mineral content in plant food products.
    Grusak MA
    J Am Coll Nutr; 2002 Jun; 21(3 Suppl):178S-183S. PubMed ID: 12071302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance Genes in Global Crop Breeding Networks.
    Garrett KA; Andersen KF; Asche F; Bowden RL; Forbes GA; Kulakow PA; Zhou B
    Phytopathology; 2017 Oct; 107(10):1268-1278. PubMed ID: 28742460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition.
    Bouis H
    SCN News; 1995; (12):15-9. PubMed ID: 12346314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of cassava to improve carotenoids.
    Sánchez FJ; Arciniegas JP; Brand A; Vacca O; Mosquera AJ; Medina A; Chavarriaga P
    Methods Enzymol; 2022; 671():31-62. PubMed ID: 35878984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops.
    La Frano MR; de Moura FF; Boy E; Lönnerdal B; Burri BJ
    Nutr Rev; 2014 May; 72(5):289-307. PubMed ID: 24689451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.).
    Birla DS; Malik K; Sainger M; Chaudhary D; Jaiwal R; Jaiwal PK
    Crit Rev Food Sci Nutr; 2017 Jul; 57(11):2455-2481. PubMed ID: 26513164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of cassava clones enriched with β-carotene and lycopene for zinc biofortification under different soil Zn conditions.
    Corguinha APB; Carvalho CA; de Souza GA; de Carvalho TS; Vieira EA; Fialho JF; Guilherme LRG
    J Sci Food Agric; 2019 Jan; 99(2):666-674. PubMed ID: 29962086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential to improve zinc status through biofortification of staple food crops with zinc.
    Hotz C
    Food Nutr Bull; 2009 Mar; 30(1 Suppl):S172-8. PubMed ID: 19472606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving iron, zinc and vitamin A nutrition through plant biotechnology.
    Zimmermann MB; Hurrell RF
    Curr Opin Biotechnol; 2002 Apr; 13(2):142-5. PubMed ID: 11950566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cassava: constraints to production and the transfer of biotechnology to African laboratories.
    Bull SE; Ndunguru J; Gruissem W; Beeching JR; Vanderschuren H
    Plant Cell Rep; 2011 May; 30(5):779-87. PubMed ID: 21212961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.